An improved direct torque controller applied to an electric vehicle

Authors

  • Miguel Durán University of Colima
  • Gerardo Guerrero National Center for Research and Technological Development
  • Jorge Gudiño University of Colima https://orcid.org/0000-0002-0585-908X
  • Abraham Claudio National Center for Research and Technological Development
  • Janeth Alcalá University of Colima https://orcid.org/0000-0002-0238-3952

DOI:

https://doi.org/10.17533/udea.redin.16767

Keywords:

electric drive, electric vehicle, improved direct torque control, induction motor, space vector modulation

Abstract

This paper presents the basic structure, the model, and the design of a torque controller for an electric vehicle (EV). The proposed EV is the transformation of a conventional vehicle with internal combustion engine to electric vehicle, where the original traction system based on an internal combustion engine is replaced by an electric traction system. The controller is based on the technique of direct torque control (DTC) plus a term that compensates the ohmic drop in the stator windings of the induction motor (IM). In order to obtain a constant switching frequency, the space vector modulation (SVM) technique is used to generate the pulses of the inverter. In order to test the performance of the control proposed, numerical results are presented, which are compared with conventional DTC scheme.

|Abstract
= 232 veces | PDF (ESPAÑOL (ESPAÑA))
= 84 veces|

Downloads

Download data is not yet available.

Author Biographies

Miguel Durán, University of Colima

Full-time Research Professor at the Faculty of Electromechanical Engineering (FIE).

Gerardo Guerrero, National Center for Research and Technological Development

Academic subdirector.

Jorge Gudiño, University of Colima

Director of the Faculty of Electromechanical Engineering.

Abraham Claudio, National Center for Research and Technological Development

Research professor.

Janeth Alcalá, University of Colima

Full-time Research Professor at the Faculty of Electromechanical Engineering (FIE).

References

C. Chan. “Present status and future trends of electric vehicles”. Advances in Power System Control, Operation and Management. Vol. 1. 1993. pp 456-469.

D. Naunin. Electric vehicles. Proceedings of the IEEE International Symposium on Industrial Electronics. Warsaw, Poland. Vol. 1. 1996. pp. 11-24.

J. Larminie, J. Lowry. Electric Vehicle Technology Explained. 1st ed. Ed. John Wiley & Sons Ltd. Great Britain, RU. 2003. pp. 7-21. DOI: https://doi.org/10.1002/0470090707

S. Sallem, M. Chaabene, Be. Kamoun. A robust nonlinear of an Electric Vehicle in traction. Systems. Proceedings of the Signals and Devices. Djerba, Túnez. 2009. pp. 1-6. DOI: https://doi.org/10.1109/SSD.2009.4956740

A. Foley, B. Gallachoir, P. Leahy, E. McKeogh. Electric Vehicles and energy storage - a case study on Ireland. Proceedings of the Vehicle Power and Propulsion Conference. Dearborn, USA. 2009. pp. 524-530. DOI: https://doi.org/10.1109/VPPC.2009.5289805

R. Chicurel, G. Carmona, E. Chicurel, F. Gutierrez. Contribution of the National University of Mexico to Electric Vehicle Technology. Proceedings of the Electronics, Robotics and Automotive Mechanics Conference. Cuernavaca, México. 2006. pp. 123-130.

F. Perez, G. Nuñez, R. Alvarez, M. Gallegos. Step by step design procedure of an Independent-Wheeled Small EV applying EVLS. Proceedings of the IEEE Annual Conference on Industrial Electronics. Paris, Francia. 2006. pp. 1176-1181.

I. Alcalá, A. Claudio, G. Guerrero. Analysis of propulsion systems in electric vehicles. Proceedings of the International Conference on Electrical and Electronics Engineering. 2005. pp. 309-313.

O. Diaz. Environmental friendly electric transport for large cities. The case of Mexico City. Proceedings of the International Symposium on Industrial Electronics. Cholula, México. Vol. 1. 2000. pp. 1-4.

L. Takahashi, T. Noguchi. “A new quick-response and high efficiency control strategy of an induction motor”. IEEE Trans. Ind. Appl. Vol. IA-22. 1986. pp. 820–827. DOI: https://doi.org/10.1109/TIA.1986.4504799

M. Depenhrock. “Direkte Selbstregelung (DSR) fiir hochdynamische Drehfeld-antriebe mit Stromrichterschaltung”. ETZ A 7. Germany. 1985. pp. 211-18.

B. Singh, P. Jain, A. Mittal, J. Gupta. Direct torque control: a practical approach to Electric vehicle. Proceedings of the IEEE Power India Conference. New Delhi, India. 2006. pp. 1-6.

A. Bazzi, A. Friedl, S. Choi, P. Krein. Comparison of induction motor drives for electric vehicle applications: Dynamic performance and parameter sensitivity analyses. Proceedings of the IEEE International Electric Machines and Drives Conference. Florida, USA. 2009. pp. 639-646. DOI: https://doi.org/10.1109/IEMDC.2009.5075273

J. Faiz, M. Sharifian, A. Keyhani, A. Proca. “Sensorless Direct Torque Control of Induction Motors Used in Electric Vehicle”. IEEE Transactions on Energy Conversion. Vol. 18. 2003. pp. 1-10. DOI: https://doi.org/10.1109/TEC.2002.805220

N. Idris, C. Toh, M. Elbuluk. “A New Torque and Flux Controllers for Direct Torque Control of Induction Motors”. IEEE Transactions on Industry Applications. Vol. 42. 2006. pp. 1358-1366. DOI: https://doi.org/10.1109/TIA.2006.882685

A. Haddoun, M. Benbouzid, D. Diallo, R. Abdessemed,

J. Ghouili, K. Srairi. Comparative Analysis of Control Techniques for Efficiency Improvement in Electric Vehicles. Proceedings of the IEEE Vehicle Power Propulsion Conf. Arlington, USA. 2007. pp. 629-634.

E. Hassankhan, D. Khaburi. “DTC-SVM Scheme for Induction Motors Fed with a Three-level Inverter”. World Academy of Science, Engineering and Technology. Vol. 2. 2008. pp. 168-172.

M. Vasudevan, R. Arumugam. Simulation of Viable Torque Control Schemes of Induction Motor for Electric Vehicles. Proceedings of the Asian Control Conference. Greensboro, USA. 2004. pp. 1377-1383.

A. Trzynadlowski. Control of Induction Motors. 1st ed. Ed. Academic Press. USA. 2001. pp 64-81. DOI: https://doi.org/10.1016/B978-012701510-1/50001-5

C. Ong. Dynamic Simulation of Electrical Machinery: Using Matlab/Simulink. 1st ed. Ed. Prentice Hall. New Jersey, USA. 1998. pp. 167-243.

J. Faiz, M. Sharifian. “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle”. IEEE Trans. on Energy Conversion. Vol. 16. 2001. pp. 104-109. DOI: https://doi.org/10.1109/60.911412

P. Vas. Sensorless Vector and Direct Torque Control. 1st ed. Ed. Oxford University Press. Oxford, UK. 1998. pp. 505-559. DOI: https://doi.org/10.1093/oso/9780198564652.003.0001

Published

2014-08-20

How to Cite

Durán, M. ., Guerrero, G., Gudiño, J., Claudio, A., & Alcalá, J. (2014). An improved direct torque controller applied to an electric vehicle. Revista Facultad De Ingeniería Universidad De Antioquia, (72), 217–228. https://doi.org/10.17533/udea.redin.16767