Fuzzy control techniques applied to a three phase synchronous rectifier current loop
DOI:
https://doi.org/10.17533/udea.redin.16966Keywords:
FIS Takagi-Sugeno, fuzzy control, three phase synchronous rectifier control, power factor correctionAbstract
This work presents three fuzzy variable structure control (FVSC) techniques applied to the current control loop in a three-phase synchronous rectifier. These techniques are based in a Takagi-Sugeno (T-S) fuzzy PI controller. The first controller is a first-order FVSC, used as a reference. Then, two FVSC strategies are presented and tested, a second and a third-order FVSC. These control schemes are first simulated and then tested in a general-purpose laboratory synchronous rectifier test bench. Experimental results show that control performance is good in all three schemes, achieving current harmonic compensation and power factor correction.
Downloads
References
M. Malinowski, M. Kazmierkowski, S. Hansen, F. Blaabjerg, G. Marques. “Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers”. IEEE Transactions on Industry Applications. Vol. 37. 2001. pp. 1019-1027. DOI: https://doi.org/10.1109/28.936392
X. Wu, S. Panda, J. Xu. “DC Link Voltage and Supply-Side Current Harmonics Minimization of Three Phase PWM Boost Rectifiers Using Frequency Domain Based Repetitive Current Controllers”. IEEE Transactions on Power Electronics. Vol. 23. 2008. pp. 1987-1997. DOI: https://doi.org/10.1109/TPEL.2008.925428
J. Kolar, F. Zach. “A Novel Three-Phase Utility Interface Minimizing Line Current Harmonics of High-Power Telecommunications Rectifier Modules”. IEEE Transactions on Industrial Electronics. Vol. 44. 1997. pp. 456-467. DOI: https://doi.org/10.1109/41.605619
A. Bueno, J. Aller, J. Restrepo, R. Harley, T. Habetler. “Harmonic and Unbalance Compensation Based on Direct Power Control for Electric Railway Systems”. IEEE Transactions on Power Electronics. Vol. 28. 2013. pp. 5823-5831. DOI: https://doi.org/10.1109/TPEL.2013.2253803
J. Restrepo, J. Viola, J. Aller, A. Bueno. A Simple Switch Selection State for SVM Direct Power Control. Proceedings of the IEEE International Symposium on Industrial Electronics. Montreal, Canada. 2006. pp. 1112-1116. DOI: https://doi.org/10.1109/ISIE.2006.295792
T. Noguchi, H. Tomiki, S. Kondo, I. Takahashi. “Direct Power Control of PWM Converter without Power-Source Voltage Sensors”. IEEE Transactions on Industry Applications. Vol. 34. 1998. pp. 473-479. DOI: https://doi.org/10.1109/28.673716
L. Moran, L. Dixon, R. Wallace. “A Three-Phase Active Power Filter Operating with Fixed Switching Frequency for Reactive Power and Current Harmonic Compensation”. IEEE Transactions on Industrial Electronics. Vol. 42. 1995. pp. 402-408. DOI: https://doi.org/10.1109/41.402480
S. Rahmani, N. Mendalek, K. Al-Haddad. “Experimental Design of a Nonlinear Control Technique for Three-Phase Shunt Active Power Filter”. IEEE Transactions on Industrial Electronics. Vol. 57. 2010. pp. 3364-3375. DOI: https://doi.org/10.1109/TIE.2009.2038945
V. Valouch. Fuzzy Power Control in PWM Voltagetype Rectifier. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE ‘97). Guimarães, Portugal. 1997. pp. 1162-1167.
A. Bouafia, F. Krim, J. Gaubert. “Fuzzy-Logic-Based Switching State Selection for Direct Power Control of Three-Phase PWM Rectifier”. IEEE Transactions on Industrial Electronics. Vol. 56. 2009. pp. 1984-1992. DOI: https://doi.org/10.1109/TIE.2009.2014746
A. Bouafia, F. Krim, J. Gaubert. Direct Power Control of Three-Phase PWM Rectifier Based on Fuzzy Logic Controller. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE). Cambridge, UK. 2008. pp. 323-328. DOI: https://doi.org/10.1109/ISIE.2008.4676887
J. Xu, J. Zhao, L. Luo, X. Ma, S. Wan. A New Control Strategy of Unity Power Factor for Three-Phase PWM Rectifier System. Proceedings of the 30th Annual Conference of IEEE Industrial Electronics Society (IECON). Busan, South Korea. 2004. pp. 709-714.
A. Shoulaie, P. Ramezanpoor, H. Amirkhani. Control of Multilevel-Inverters for Active Power Filters Using a Fuzzy Space-Vector Method. Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE ’97). Guimarães, Portugal. 1997. pp. 279-282.
T. Lee, D. Tzeng. Repetitive Learning Control with Fuzzy Tuning for Three-Phase Shunt Active Power Filters in Stationary d-q Frame. Proceedings of the International Power Engineering Conference (IPEC). Singapore, Singapore. 2007. pp. 1059-1064.
J. Norniella, J. Cano, G. Orcajo, C. Rojas, F. Gonzalez, M. Cabanas, M. Melero. “Improving the Dynamics of Virtual Flux-Based Control of Three-Phase Active Rectifiers”. IEEE Transactions on Industrial Electronics. Vol. 61. 2014. pp. 177-187. DOI: https://doi.org/10.1109/TIE.2013.2245614
M. Malinowski, M. Jasinski, M. Kazmierkowski. “Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPCSVM)”. IEEE Transactions on Industrial Electronics. Vol. 51. 2004. pp. 447-454. DOI: https://doi.org/10.1109/TIE.2004.825278
J. Restrepo, V. Guzmán, M. Giménez, A. Bueno, J. Aller. “Parallelogram Based Method for Space Vector Pulse Width Modulation”. Revista Facultad de Ingeniería Universidad de Antioquia. N.° 51. 2010. pp. 161-171.
T. Lee, D. Tzeng, M. Chong. Fuzzy Iterative Learning Control for Three-Phase Shunt Active Power Filters. Proceedings of the IEEE International Symposium on Industrial Electronics. Montreal, Canada. 2006. pp. 882-885. DOI: https://doi.org/10.1109/ISIE.2006.295751
A. Luo, X. Xu, H. Fang, H. Fang, J. Wu, C. Wu. “Feedback-Feedforward Pi-type Iterative Learning Control Strategy for Hybrid Active Power Filter with Injection Circuit”. IEEE Transactions on Industrial Electronics. Vol. 57. 2010. pp. 3767-3779. DOI: https://doi.org/10.1109/TIE.2010.2040567
X. Du, L. Zhou, H. Lu, H. Tai. “DC Link Active Power Filter for Three-Phase Diode Rectifier”. IEEE Transactions on Industrial Electronics. Vol. 59. 2012. pp. 1430-1442. DOI: https://doi.org/10.1109/TIE.2011.2167112
G. Nageswara, K. Chandra, P. Sangameswara. “Three Phase Active Power Filter Controller for Balanced and Unbalanced Non-linear Load”. International Journal of Engineering Science and Technology. Vol. 2. 2010. pp. 4072-4082.
I. Habi, M. Bouguerra, D. Ouahdi, H. Meglouli. “Using the Shunt Active Power Filter for Compensation of the Distorted and Unbalanced Power System Voltage”. World Academy of Science, Engineering and Technology. Vol. 24. 2008. pp. 980-984.
M. SajediHir, Y. Hoseinpoor, P. MosadeghArdabili, T. Pirzadeh. “Analysis and Simulation of a d-statcom for Voltage Quality Improvement”. Australian Journal of Basic and Applied Sciences. Vol. 5. 2011. pp. 864- 870.
B. Singh, S.. Arya. “Design and Control of a d-statcom for Power Quality Improvement Using Cross Correlation Function Approach”. International Journal of Engineering, Science and Technology. Vol. 4. 2012. pp. 74-86. DOI: https://doi.org/10.4314/ijest.v4i1.9S
C. Sao, P. Lehn, M. Iravani, J. Martinez. “A Benchmark System for Digital Time-Domain Simulation of a Pulse-Width-Modulated d-statcom”. IEEE Transactions on Power Delivery. Vol. 17. 2002. pp. 1113-1120. DOI: https://doi.org/10.1109/TPWRD.2002.803836
V. Singhal. “Fuzzy Pre-Compensated Pi Control of Active Filters”. Journal of Power Electronics. Vol. 8. 2008. pp. 141-147.
W. Dai, B. Wang, Y. Xie. A Novel Fuzzy Logic Controller for Active Power Filter. Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, (CIMSA ‘09). Hong Kong, China. 2009. pp. 118-123.
C. Bhende, S. Mishra, S. Jain. “Ts-Fuzzy-Controlled Active Power Filter for Load Compensation”. IEEE Transactions on Power Delivery. Vol. 21. 2006. pp. 1459-1465. DOI: https://doi.org/10.1109/TPWRD.2005.860263
X. Dianguo, H. Na, W. Wei. Study on Fuzzy Controller with a Self-Adjustable Factor of Active Power Filter. Proceedings of the 32nd Annual Conference on Industrial Electronics (IECON). Paris, France. 2006. pp. 2226-2231. DOI: https://doi.org/10.1109/IECON.2006.347280
Y. Dongmei, G. Qingding, H. Qing, L. Chunfang. A Novel DSP Based Current Controller with Fuzzy Variable-Band Hysteresis for Active Power Filters. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific. Dalian, China. 2005. pp. 1-5.
Y. Chen, B. Fu, Q. Li. Fuzzy Logic Based AutoModulation of Parameters Pi Control for Active Power Filter. Proceedings of the 7th World Congress on Intelligent Control and Automation (WCICA). Chongqin, China. 2008. pp. 5228-5232. DOI: https://doi.org/10.1109/WCICA.2008.4593780
W. Gu, W. Yu. Research of Three Phase Shunt Active Power Filter Based on Fuzzy-Sliding Variable Structure Control. Proceedings of the IEEE International Conference on Control and Automation (ICCA). Guangzhou, China. 2007. pp. 294-298.
A. Berzoy, M. Strefezza. Fuzzy Variable Structure Controller for a Three-Phase Rectifier with Power Factor Correction. Proceedings of the ICCAS-SICE. Fukuoka, Japan. 2009. pp. 412-417.
A. Berzoy, M. Strefezza. “Optimized Fuzzy Variable Structure for a Three-Phase rectifier with power factor correction”. WSEAS Transactions on Power Systems. Vol. 4. 2009. pp. 275-284.
A. Berzoy, E. Baethge, J. Restrepo, J. Viola. Fuzzy Control System for Maximum Power Point Tracking in Solar Panels Based on DC-DC Converter Pi Current Control. Proceedings of the VI Andean Region International Conference (ANDESCON). Cuenca, Ecuador. 2012. pp. 119-122. DOI: https://doi.org/10.1109/Andescon.2012.36
M. Giménez, V. Guzmán, J. Restrepo, J. Aller, A. Bueno, J. Viola, A. Millán, A. Cabello. “Plataforma: Development of an Integrated Dynamic Test System to Determine Power Electronics Systems Performance”. Revista de la Facultad de Ingeniería U.C.V. Vol. 23. 2008. pp. 91-102.
H. Komurcugil. “Rotating-Sliding-Line-Based SlidingMode Control for Single-Phase UPS Inverters”. IEEE Transactions on Industrial Electronics. Vol. 59. 2012. pp. 3719-3726. DOI: https://doi.org/10.1109/TIE.2011.2159354
M. Curkovic, K. Jezernik, R. Horvat. “FPGA-Based Predictive Sliding Mode Controller of a ThreePhase Inverter”. IEEE Transactions on Industrial Electronics. Vol. 60. 2013. pp. 637-644. DOI: https://doi.org/10.1109/TIE.2012.2206360
J. Jang, C. Sun, E. Mizutani. “Neuro-Fuzzy and Soft Computing-a Computational Approach to Learning and Machine Intelligence [book review]”. IEEE Transactions on Automatic Control. Vol. 42. 1997. pp. 1482-1484. DOI: https://doi.org/10.1109/TAC.1997.633847
D. Driankov, H. Hellendoorn, M. Reinfrank. An Introduction to Fuzzy Control. 1st ed. Ed. SpringerVerlag. Berlin, Germany. 1993. pp. 307. DOI: https://doi.org/10.1007/978-3-662-11131-4_1
R. Yager, D. Filev. Essentials of Fuzzy Modeling and Control. 1st ed. Ed. John Wiley and Sons. New York, USA. 1994. pp. 408.
V. Raviraj, P. Sen. “Comparative Study of ProportionalIntegral, Sliding Mode, and Fuzzy Logic Controllers for Power Converters”. IEEE Transactions on Industry Applications. Vol. 33. 1997. pp. 518-524. DOI: https://doi.org/10.1109/28.568018
G. Mann, B. Hu, R. Gosine. “Analysis of Direct Action Fuzzy PID Controller Structures”. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Vol. 29. 1999. pp. 371-388. DOI: https://doi.org/10.1109/3477.764871
A. Visioli. “Fuzzy Logic Based Set-Point Weight Tuning of PID Controllers”. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans. Vol. 29. 1999. pp. 587-592. DOI: https://doi.org/10.1109/3468.798062
H. Li, H. Gatland, A. Green. “Fuzzy Variable Structure Control”. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Vol. 27. 1997. pp. 306-312. DOI: https://doi.org/10.1109/3477.558824
A. Kandel, G. Langholz. Fuzzy Control Systems. 1st ed. Ed. CRC Press. Florida, USA. 1994. pp. 656.
R. Park. “Two-Reaction Theory of Synchronous Machines Generalized Method of Analysis-part I”. Transactions of the American Institute of Electrical Engineers. Vol. 48. 1929. pp. 716-727. DOI: https://doi.org/10.1109/T-AIEE.1929.5055275
J. Das. Power System Analysis: Short-Circuit Load Flow and Harmonics. 1st ed. Ed. CRC Press. New York, USA. 2002. pp. 831.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.