Digital classification of cloud masses from weather imagery using machine learning algorithms
DOI:
https://doi.org/10.17533/udea.redin.17254Keywords:
machine learning algorithms, weather images, decision trees, support vector machines, random forests, loud mass classificationAbstract
Accurate identification of precipitating clouds is a challenging task. In the present work, Support Vector Machines, Decision Trees and Random Forests algorithms were applied to discriminate between precipitating clouds and non-precipitating clouds from a satellite weather image GOES-13 covering the Colombian territory. The objective of this study was to evaluate the performance of machine learning (ML) algorithms for digital classification of cloud masses in terms of thematic accuracy classification using the conventional Mahalanobis algorithm as benchmark. Results show that ML algorithms provide more accurate classification of cloud masses than conventional algorithms. The best accuracy was obtained using Random Forests (RF), with an overall thematic accuracy of 97%. Furthermore, the classification obtained with the RF algorithm was compared pixel-to-pixel with NASA Tropical Rainfall Measurement Mission (TRMM) rainfall estimates, obtaining an overall accuracy of 94%. ML algorithms can therefore be used to improve current precipitating clouds identification methods.
Downloads
References
K. Buddhiraju, I. Rizvi. Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images. Proceedings of the Geosci. Remote Sens Symp. Honolulu, USA. 2010 pp. 40–43. DOI: https://doi.org/10.1109/IGARSS.2010.5652033
H. Chethan, R. Raghavendra, G. Kumar. Texture Based Approach for Cloud Classification Using SVM. Proceedings of the Int. Conf. Adv. Recent Technol. Commun. Comput. Kottayam, Indian. 2009. pp. 688– 690. DOI: https://doi.org/10.1109/ARTCom.2009.43
L. Gómez, G. Camps, L. Bruzzone, J. Calpe. “Mean map kernel methods for semisupervised cloud classification”. Geosci. Remote Sensing, IEEE Trans. Vol. 48. 2010. pp. 207–220. DOI: https://doi.org/10.1109/TGRS.2009.2026425
M. Azimi-Sadjadi, S. Zekavat. Cloud classification using support vector machines. Proceedings of the Geosci. Remote Sens. Symp. IGARSS 2000. IEEE 2000 Int. Honolulu, USA. 2000. pp. 669–671.
P. Addesso, R. Conte, M. Longo, R. Restaino, G. Vivone. SVM-based cloud detection aided by contextual information. Proceedings of the Tyrrhenian Work. Adv. Radar Remote Sens. Naples, USA. 2012. pp. 214–221. DOI: https://doi.org/10.1109/TyWRRS.2012.6381132
I. Bajwa, M. Naweed. “Feature Based Image Classification by using Principal Component Analysis”. ICGST Int. J. Graph. Vis. Image Process. GVIP. Vol. 9. 2009. pp. 11–17.
A. Tsonis. “Single Thresholding and Rain Area Delineation from Satellite Imagery”. J. Appl. Meteorol. Vol. 27. 1988. pp. 1302–1306. DOI: https://doi.org/10.1175/1520-0450(1988)027<1302:STARAD>2.0.CO;2
I. Lensky, V. Levizzani. Precipitation: advances in measurement, estimation, and prediction. “Estimation of precipitation from space-based platforms”. 1st ed. Ed. Springer. Berlin, Alemania. 2008. pp. 195–217. DOI: https://doi.org/10.1007/978-3-540-77655-0_8
M. Desbois, G. Seze, G. Szejwach. “Automatic Classification of Clouds on METEOSAT Imagery: Application to High-Level Clouds”. J. Appl. Meteorol. Vol. 21. 1982. pp. 401–412. DOI: https://doi.org/10.1175/1520-0450(1982)021<0401:ACOCOM>2.0.CO;2
J. Peak , T. Paul. “Segmentation of satellite imagery using hierarchical thresholding and neural networks” J. Appl. Meteorol. Vol. 33. 1994. pp. 605–616. DOI: https://doi.org/10.1175/1520-0450(1994)033<0605:SOSIUH>2.0.CO;2
F. De Osés. Meteorología Aplicada a la Navegación. 3rd ed. Ed. Univ. Politèc. de Catalunya. Barcelona, España. 2010. pp. 222.
W. Xu, M. Wooster, G. Roberts, P. Freeborn. “New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America”. Remote Sens. Environ. Vol. 114. 2010. pp. 1876–1895. DOI: https://doi.org/10.1016/j.rse.2010.03.012
Instituto de Hidrología Meteorología y Estudios Ambientales. Atlas climatológico de Colombia. 1st ed. Ed. Imprenta Nacional de Colombia. Bogotá, Colombia. 2005. pp. 220.
A. Tsonis. “On the separability of various classes from the GOES visible and infrared data”. J. Clim. Appl. Meteorol. Vol. 23. 1984. pp. 1393–1410. DOI: https://doi.org/10.1175/0733-3021-23.10.1393
A. Tsonis, G. Isaac. “On a New Approach for Instantaneous Rain Area Delineation in the Midlatitudes Using GOES Data”. J. Clim. Appl. Meteorol. Vol. 24. 1985. pp. 1208–1218. DOI: https://doi.org/10.1175/1520-0450(1985)024<1208:OANAFI>2.0.CO;2
B. Tso, P. Mather. Classification methods for remotely sensed data. 2nd ed. Ed. CRC Press. New York, USA. 2009. pp. 376.
V. Vapnik. The Nature of Statistical Learning Theory. 1st ed. Ed. Springer. New York, USA. 2000. pp. 340. DOI: https://doi.org/10.1007/978-1-4757-3264-1_1
P. Tan, M. Steinbach, V. Kumar. Classification: Basic Concepts, Decision Trees, and Model Evaluation in Introduction to Data Mining. 1st ed. Ed. AddisonWesley. 2005. pp. 769.
T. Hastie, R. Tibshirani, J. Friedman. The elements of statistical learning. 2nd ed. Ed. Springer. New York, USA. 2009. pp. 745. DOI: https://doi.org/10.1007/978-0-387-84858-7
A. Boulesteix, S. Janitza, J. Kruppa, I. König, A. Janitza. “Overview of Random Forest Methodology and Practical Guidance with Emphasis on Computational Biology and Bioinformatics”. Data mining and knowledge Discovery. Vol. 2. 2012. pp. 493-507. DOI: https://doi.org/10.1002/widm.1072
B. Goswami, G. Bhandari. “Convective Cloud Detection and Tracking from Series of Infrared Images”. J. Indian Soc. Remote Sens. Vol. 41. 2012. pp. 1–9. DOI: https://doi.org/10.1007/s12524-012-0234-3
I. Lizarazo, “SVM-based segmentation and classification of remotely sensed data”. Int. J. Remote Sens. Vol. 29. 2008. pp. 7277–7283. DOI: https://doi.org/10.1080/01431160802326081
D. Hillger, G. Ellrod. “Detection of important atmospheric and surface features by employing principal component image transformation of GOES imagery”. J. Appl. Meteorol. Vol. 42. 2003. pp. 611– 629. DOI: https://doi.org/10.1175/1520-0450(2003)042<0611:DOIAAS>2.0.CO;2
A. Ferreira. Meteorología práctica. 1st ed. Ed. Oficina de Textos. São Paulo, Brasil. 2006. pp. 188.
D. Powers. “Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation”. J. Mach. Learn. Technol. Vol. 2. 2011. pp. 37–63.
M. Sokolova, G. Lapalme. “A systematic analysis of performance measures for classification tasks”. Inf. Process. Manag. Vol. 45. 2009. pp. 427-437. DOI: https://doi.org/10.1016/j.ipm.2009.03.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.