On the implementation of adaptive multiresolution spectral WENO scheme for the multiclass Lighthill-Whitham-Richards traffic model

Authors

DOI:

https://doi.org/10.17533/udea.redin.17574

Keywords:

Lighthill-Whitham-Richards kinematic traffic model, WENO schemes, conservation laws, adaptive multiresolution

Abstract

In this paper, the implementation of a spectral or characteristic-based fifth order  WENO  (Weighted  Essentially  Non-Oscillatory)  scheme  is  described  in  detail  along  with  an  adaptive  multiresolution  technique  for  efficiently computing  the  numerical  solution  of  a  multi-class  traffic  flow  model described mathematically by a nonlinear system of conservation laws. In [1] the  authors  considered  the  same  problem  but  in  a  component-wise  manner.    More recently, [2] conducted numerical experiments by using characteristic-based schemes combined with AMR (Adaptive Mesh Refinement) strategy.

|Abstract
= 414 veces | PDF (ESPAÑOL (ESPAÑA))
= 47 veces|

Downloads

Download data is not yet available.

Author Biographies

Carlos Arturo Vega-Fuentes, Northern University

Full-time Professor, Department of Mathematics and Statistics, Basic Sciences Division.

Edwin Bolaño-Benítez, Northern University

Department of Mathematics and Statistics, Division of Basic Sciences.

References

R. Bürger, A. Kozakevicius. “Adaptive multiresolution WENO schemes for multispecies kinematic flow models”. J. Comput. Phys. Vol. 224. 2007. pp. 1190- 1222. DOI: https://doi.org/10.1016/j.jcp.2006.11.010

R. Donat, P. Mulet. “Characteristic-based schemes for multi-class Lighthill-Whitham-Richards traffic models”. J. Sci. Comput. Vol. 37. 2008. pp. 233-250. DOI: https://doi.org/10.1007/s10915-008-9209-5

A. Harten. “Multiresolution algorithms for the numerical solution of hyperbolic conservation laws”. Comm. Pure Appl. Math. Vol. 48. 1995. pp. 1305- 1342. DOI: https://doi.org/10.1002/cpa.3160481201

S. Benzoni, R. Colombo. “An n-populations model for traffic flow”. Eur. J. Appl. Math. Vol. 14. 2003. pp. 587-612. DOI: https://doi.org/10.1017/S0956792503005266

G. Wong, S. Wong. “A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers”. Transp. Res. A. Vol. 36. 2002. pp. 827-841. DOI: https://doi.org/10.1016/S0965-8564(01)00042-8

P. Zhang, R. Liu, S. Wong, S. Dai. “Hyperbolicity and kinematic waves of a class of multi-population partial differential equations”. Eur. J. Appl. Math. Vol. 17. 2006. pp. 171-200. DOI: https://doi.org/10.1017/S095679250500642X

R. Donat, P. Mulet. “A secular equation for the Jacobian matrix of certain multispecies kinematic flow models”. Numer. Methods Partial Differential Equations. Vol. 26. 2010. pp. 159-175. DOI: https://doi.org/10.1002/num.20423

R. Bürger, A. Kozakevicius, M. Sepúlveda. “Multiresolution schemes for strongly degenerate parabolic equation in one space dimension”. Numer. Meth. Partial Diff. Eqns. Vol. 23. 2007. pp. 706-730. DOI: https://doi.org/10.1002/num.20206

A. Cohen, S. Kaber, S. Müller, M. Postel. “Fully adaptive multiresolution finite volume schemes for conservation laws”. Math. Comp. Vol. 88. 2001. pp. 399-443. DOI: https://doi.org/10.1007/s211-001-8009-3

A. Harten. “Multiresolution representation of data: a general framework”. SIAM J. Numer. Anal. Vol. 33. 1996. pp. 1205-1256. DOI: https://doi.org/10.1137/0733060

C. Shu. “Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws”. B. Cockburn, C. Johnson, C. W. Shu, E. Tadmor (editors). Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Ed. Springer-Verlag. Berlin, Germany. 1998. pp. 325- 432. DOI: https://doi.org/10.1007/BFb0096355

G. Jiang, C. Shu. “Efficient implementation of weighted ENO schemes”. Journal of Computational Physics. Vol. 126. 1996. pp. 202-228. DOI: https://doi.org/10.1006/jcph.1996.0130

A. Henrick, T. Aslam, J. Powers. “Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points”. J. Comput. Phys. Vol. 207. 2005. pp. 542-567. DOI: https://doi.org/10.1016/j.jcp.2005.01.023

S. Gottlieb, D. Ketcheson, C. Shu. “High order strong stability preserving time Discretization”. J. Sci. Comput. Vol. 38. 2009. pp. 251-289. DOI: https://doi.org/10.1007/s10915-008-9239-z

R. Le Veque. Finite Volume Methods for Hyperbolic Problems. 1st ed. Ed. Cambridge University Press. Cambridge, UK. 2002. pp. 68.

P. Zhang, S. Wong, S. Dai. “A note on the weigthed essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model”. Commun. Numer. Meth. Engng. Vol. 25. 2009. pp. 1120-1126. DOI: https://doi.org/10.1002/cnm.1277

M. Zhang, C. Shu, G. Wong, S. Wong. “A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill–Whitham–Richards traffic flow model”. J. Comput. Phys. Vol. 191. 2003. pp. 639-659. DOI: https://doi.org/10.1016/S0021-9991(03)00344-9

J. Anderson. “A secular equation for the eigenvalues of a diagonal matrix perturbation”. Lin. Alg. Appl. Vol. 246. 1996. pp. 49-70. DOI: https://doi.org/10.1016/0024-3795(94)00314-9

R. Bürger, R. Donat, P. Mulet, C. Vega. “Hyperbolicity analysis of polydisperse sedimentation models via a secular equation for the flux Jacobian”. SIAM J. Appl. Math. Vol. 70. 2010. pp. 2186-2213. DOI: https://doi.org/10.1137/09076163X

R. Bürger, R. Donat, P. Mulet, C. Vega. “On the implementation of WENO schemes for a class of polydisperse sedimentation models”. J. Comput. Phys. Vol. 230. 2011. pp. 2322-2344. DOI: https://doi.org/10.1016/j.jcp.2010.12.019

R. Bürger, P. Mulet, L. Villada. “A diffusively Corrected Multiclass Lighthill-Whitham-Richards Traffic Model with Anticipation Lengths and Reaction Times”. Adv. Appl. Math. Mech. Vol. 5. 2013. pp. 728- 758. DOI: https://doi.org/10.4208/aamm.2013.m135

Published

2014-11-13

How to Cite

Vega-Fuentes, C. A., & Bolaño-Benítez, E. (2014). On the implementation of adaptive multiresolution spectral WENO scheme for the multiclass Lighthill-Whitham-Richards traffic model. Revista Facultad De Ingeniería Universidad De Antioquia, (73), 69–78. https://doi.org/10.17533/udea.redin.17574