Lipid Vesicle Detection using ISFET devices

Authors

  • Juan Carlos Briceño University of the Andes
  • Juan Carlos Ortiz Pereira University of the Andes
  • Alba Graciela Ávila University of the Andes
  • Ivan Adolfo Rey University of the Andes
  • Chad Leidy University of the Andes

DOI:

https://doi.org/10.17533/udea.redin.18134

Keywords:

ISFET, detection, lipid vesicle

Abstract

The Ion Sensitive Field Effect (ISFET) Transistors are electronic devices widely used for detecting, ion concentrations, trapped charge or charge decay processes. This article reports on the electrical characterization of ISFETs exposed to buffer solutions sets at pH 4, 5, 7, and 10. When operated in their saturation regime ISFETs act as local charge detectors. This capability is applied to detect lipid vesicles. Lipid vesicles have promising applications in drug delivery, and their accurate detection can be important in understanding their interaction with living systems.

|Abstract
= 204 veces | PDF (ESPAÑOL (ESPAÑA))
= 73 veces|

Downloads

Download data is not yet available.

Author Biographies

Juan Carlos Briceño, University of the Andes

Department of Mechanical Engineering and Biomedical Engineering.

Juan Carlos Ortiz Pereira, University of the Andes

CMUA. Department of Electrical and Electronic Engineering.

Alba Graciela Ávila, University of the Andes

CMUA. Department of Electrical and Electronic Engineering.

Ivan Adolfo Rey, University of the Andes

Physics department.

Chad Leidy, University of the Andes

Physics department.

References

P. Bergveld. “Development of an ion-sensitive solidstate device for neuro physical measurements, short communication”. IEEE Trans. Bio-Med. Eng.Vol. 17. 1970. pp. 70-71. DOI: https://doi.org/10.1109/TBME.1970.4502688

Y. Ghallab, W. Badawy, K.V.I.S. Kaler. A novel pH sensor using differential ISFET current mode read-out circuit. International Conference on MEMS, NANO and Smart Systems. Banff, Canada. 2003. pp. 255-258.

V. Chodavarapu, A. Titus, A. CartWrright. CMOS ISFET Microsystem for Biomedical Applications. In procceding of: Irvine, CA, US. 2005. pp 109-112.

D. Schaffhauser, M. Patti, T. Goda, Y. Miyahara, I. Forster. “An Integrated Field-Effect Microdevice for Monitoring Membrane Transport in Xenopus laevis Oocytes via Lateral Proton Diffusion”. PLoS ONE. Vol. 7. 2012. pp. 1-8. DOI: https://doi.org/10.1371/journal.pone.0039238

G. Grieshaber, R. MacKenzie, J. Vo ros E. Reimhult. “Electrochemical Biosensors-sensors principles and architectures”. Sensors. Vol. 8. 2008. pp. 1400-1458. DOI: https://doi.org/10.3390/s8031400

M. Angelova, S. Soleau, P. Meleard, J. Faucon, P. Bothorel. “Preparation of giant vesicles by external a.c. electric fields. Kinetics and applications”. Prog. Colloid Polym. Sci. Vol. 89. 1992. pp. 127-131 DOI: https://doi.org/10.1007/BFb0116295

C. Cané, I. Gràcia, A. Merlos, M. Lozano, E. LoraTamayo, J. Esteve. Compatibility of ISFET and CMOS technologies for smart sensors. Proc. Int. Conf. SolidState Sensors and Actuators (Transducers ‘91). San Francisco, USA. 1991. pp. 225-228.

A. McNaught, A. Wilkison. Compendium of Chemical Terminology. 2nd ed. The “Gold Book”, Blackwell Scientific Publications. Oxford, England. 1997. pp. 248 - 552

Published

2014-01-17

How to Cite

Briceño, J. C., Ortiz Pereira, J. C., Graciela Ávila, A., Rey, I. A., & Leidy, C. (2014). Lipid Vesicle Detection using ISFET devices. Revista Facultad De Ingeniería Universidad De Antioquia, (69), 89–95. https://doi.org/10.17533/udea.redin.18134