Hardware emulation of quantum circuits based on Toffoli gates
DOI:
https://doi.org/10.17533/udea.redin.19660Keywords:
toffoli gate, parallel processing, emulation, hardware implementation, quantum computationAbstract
This work presents the design of a hardware architecture for the emulation of quantum circuits based on Toffoli gates allowing the emulation of more than 50 qubits. The state of the system is obtained processing each basis state by means of the functions determined by the quantum gates for each qubit; the time required to execute the emulation grows exponentially only with the number of qubits that are used to generate a superposition of states, but not with the total amount of qubits of the system as occurs when the conventional matrix representation is used. Additionally, an array of processing units was designed to decrease the execution time. The synthesis results allow concluding that 9.35 seconds are required to emulate the 8-bit modular exponentiation, which uses 48 qubits, 155,312 quantum gates and requires processing 131,072 basis states. Furthermore these results allow estimating that 256 processing units of 52 qubits can be implemented in the FPGA EP3C120F780I7.
Downloads
References
U. Khalid, Z. Zilic, K. Radecka. FPGA Emulation of Quantum Circuits. ICCD, 2004 IEEE International Conference on Computer Design. San Jose, California, USA. 2004. pp. 310-315.
M. Fujishima. FPGA-based High-speed Emulator of Quantum Computing. ICFPT, 2003 IEEE International Conference on Field-Programmable Technology. Tokyo, Japan. 2003. pp. 21-26.
M. Aminian, M. Saeedi, M. Zamani, M. Sedighi. FPGA-Based Circuit Model Emulation of Quantum Algorithms. IEEE Computer Society Annual Symposium on VLSI. Montpellier, Francia. 2008. pp. 399-404. DOI: https://doi.org/10.1109/ISVLSI.2008.43
K. Aggour, R. Mattheyses, J. Shultz. Efficient Quantum Computing Simulation Through Dynamic Matrix Restructuring and Distributed Evaluation. IEEE International Conference on Cluster Computing (Cluster 2007). Austin, Texas, USA. 2007. pp. 1-10. DOI: https://doi.org/10.1109/CLUSTR.2007.4629211
G. Arnold, T. Lippert, N. Pomplun, M. Richter. Large Scale Simulation of Ideal Quantum Computers on SMP-Clusters. Ed. John von Neumann Institute for Computing. Julich, Alemania. 2006. pp. 447-454.
M. Nielsen, I. Chuang. Quantum Computation and Quantum Information. 7th ed. Ed. Cambridge University Press. Cambridge, United Kingdom. 2010. pp. 216-242.
R. Perry. The Temple Of Quantum Computing Version 1.1. Available on: http://www.toqc.com/TOQCv1_1.pdf. Accessed: April 27 2011.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.