Structural health monitoring methodology for simply supported bridges: numerical implementation

Authors

  • Carlos Alberto Riveros Jerez Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.20189

Keywords:

: Eigenvector sensitivity method, natural excitation technique, eigensystem realization algorithm, the bayesian probabilistic approach for damage detection

Abstract

Structural health monitoring of civil structures is currently receiving great amount of attention by researchers due to the economic impact and life-safety implications of early damage detection. Current visual inspection techniques, which aim to detect local damage, can be used in conjunction with a structural health monitoring system to inspect more localized regions. This paper presents a structural health monitoring methodology for simply supported bridges, which is divided into four steps; the first step deals with the optimum location of sensors using the concept of Fisher information matrix, the second and third steps use ambient excitation sources for system identification and the final step employs the Bayesian probabilistic approach to detect structural damage sites. A finite element model of a scaled bridge is used to carry out this numerical implementation. The results show that the proposed methodology can be implemented in the railway system of Medellín. The repetitive pattern of simply supported bridges can greatly facilitate the implementation of damage monitoring systems for the whole railway system.

|Abstract
= 353 veces | PDF (ESPAÑOL (ESPAÑA))
= 49 veces|

Downloads

Download data is not yet available.

Author Biography

Carlos Alberto Riveros Jerez, Universidad de Antioquia

Departmento de Ingeniería Civil

References

A. Rytter. Vibration Based Inspection of Civil Engineering Structures. Ph. D. dissertation. Department of Building Technology and Structural Engineering, Aalborg University, Denmark, 1993. pp. 193.

J. P. Lynch. Decentralization of Wireless Monitoring and Control Technologies for Civil Structures. Ph. D. dissertation, Department of Civil and Environmental Engineering, Stanford University, 2002. pp. 237.

S. W. Doebling, C. R. Farrar, M. B. Prime, D. W. She-vitz. “Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review”. Technical Report LA-13070-MS. Los Alamos National Laboratory, Los Alamos, NM. 1996. pp. 134. DOI: https://doi.org/10.2172/249299

C. R. Farrar, P. J. Cornwell, S. W. Doebling, M. B. Prime. “Structural Health Monitoring Studies of the Alamosa Canyon and I-40 Bridges”. Technical Report LA-13635-MS. Los Alamos National Laboratory, NM. 2000. pp. 141.

F. E. Udwadia. “Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Systems”. Journal of Engineering Mechanics. Vol. 102. 1994. pp. 368-390. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)

D. C. Kammer. “Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures”. Journal of Guidance, Control, and Dynamics. Vol. 14. 1991. pp. 251–259. DOI: https://doi.org/10.2514/3.20635

F. M. Hemez, C. Farhat. “An Energy Based Optimum Sensor Placement Criterion and Its Application to Structure Damage Detection”. Proc. 12th International Modal Analysis Conference (Honolulu, HI: Society of Experimental Mechanics). Vol. 19. 1994. pp. 1568–75.

Z. Y. Shi, S. S. Law, L. M. Zhang. “Optimum Sensor Placement for Structural Damage Detection”. Journal of Engineering Mechanics. Vol. 126. 2000. pp. 1173-1179. DOI: https://doi.org/10.1061/(ASCE)0733-9399(2000)126:11(1173)

Y. Xia. Condition Assessment of Structures Using Dyna-mic Data. Ph. D. dissertation. Nanyang Technological University, Singapore. 2002. pp. 210.

T. Miyashita, H. Ishii, Y. Fujino, A. Shoji, M. Seki. “Clarification of the Effect of High-Speed Train Induced Vibrations on a Railway Steel Box Girder Bridge Using Laser Doppler Vibrometer”. Proc. International Conference on Experimental Vibration Analysis for Civil Engineering Structures (Bordeaux, France). 2005. pp. 349-357.

J. N. Juang, R. S. Pappa. “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction”. Journal of Guidance, Control, and Dynamics. Vol. 8. 1985. pp. 620-627. DOI: https://doi.org/10.2514/3.20031

J. M. Caicedo. Structural Health Monitoring of Flexible Structures. Ph. D. dissertation. Washington University in St. Louis, USA. 2003. pp. 172.

H. Sohn, C. R. Farrar, F. M. Hemez, D. D. Shunk, D. W. Stinemates, B. R. Nadler. “A Review of Structural Health Monitoring Literature: 1996-2001”. Technical Report LA-13976-MS. Los Alamos National Laboratory, Los Alamos, NM. 2003. pp. 307.

H. Sohn, K. Law. “Bayesian Probabilistic Approach for Structural Damage Detection”. Journal of Earthquake Engineering and Structural Dynamics. Vol. 26. 1997. pp. 1259-1281. DOI: https://doi.org/10.1002/(SICI)1096-9845(199712)26:12<1259::AID-EQE709>3.0.CO;2-3

H. Sohn. A Bayesian Probabilistic Approach for Damage Detection for Civil Structures. Ph. D. dissertation. Department of Civil and Environmental Engineering, Stanford University, USA. 1998. pp. 220.

C.A. Riveros Jerez. Sensor Placement for Continuous Damage Monitoring on Cable-stayed Bridges: Numerical Implementation. Master thesis. Department of Civil Engineering, University of Tokyo, Japan. 2004. pp. 111.

F. E. Udwadia, J. A. Garba. “Optimal Sensor Locations for Structural Identification”, Proc. JPL Workgroup on Identification and Control of Flexible Space Structures (San Diego, CA). 1985. pp. 247-261.

C. R. Farrar, G. H. James III. “System identification from Ambient Vibration Measurement on a Bridge”. Journal of Sound and Vibration. Vol. 250. 1997. pp. 1-18. DOI: https://doi.org/10.1006/jsvi.1997.0977

M. Toshiba and E. Saito. “Structural Identification by Extended Kaman Filter”. Journal of Engineering Me-chanics. ASCE. Vol. 110. 1984. pp. 1757-1770. DOI: https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1757)

L. Zhang, H. Kanda, D. L. Brown, R. G. Allemang. “A Polyreference Frequency Domain Method for Modal Parameter Identification”. Technical Report ASME-85-DEC-106. American Society of Mechanical Engineering. 1985. pp. 6.

K. Lin, R. E. Skelton. “Q-Markov Covariance Equivalent Realization and its Application to Flexible Structure Identification”. Journal of Guidance, Control, and Dynamics. Vol. 16. 1993. pp. 308-319. DOI: https://doi.org/10.2514/3.21005

N. Stubbs, J. T. Kim, C. R. Farrar. “Field Verification of a Nondestructive Damage Localization and Severity Estimation Algorithm”. Proceedings 13th International Modal Analysis Conference, Nashville. TN. 1995. pp. 123-135.

C. R. Farrar, D. Jauregui. “Damage Detection Algorithms Applied to Experimental and Numerical Modal Data from the I-40 Bridge”. Technical Report LA-13074-MS. Los Alamos National Laboratory, Los Alamos, NM. 1996. pp. 135. DOI: https://doi.org/10.2172/201810

L. Garibaldi, E. Giorcelli, B. A. D. Piombo. “ARMAV Techniques for Traffic Excited Bridges”. ASME Journal of Vibrations and Acoustics. Vol. 120. 1998. pp. 713-718. DOI: https://doi.org/10.1115/1.2893888

J. P. Lynch, H. Sohn, K. Law. “The Development and Application of a Damage Detection Toolbox for Matlab”. The 5th US National Congress on Computational Mechanics, University of Colorado at Boulder. CO. 1999. pp. 45-52.

S. W. Doebling, C.R. Farrar, P. J. Cornwell. “DIAMOND: A Graphical User Interface Toolbox for Comparative Modal Analysis and Damage Identification”. Proc. of the 6th International Conference on Recent Advances in Structural Dynamics, Southampton. UK. 1997. pp. 399-412.

D. W. Allen, J. A. Clough, H. Sohn, C. R. Farrar. “A Software Tool for Graphically Assembling Damage Identification Algorithms”. Smart Structures and Materials. Vol. 5057. 2003. pp. 138-144. DOI: https://doi.org/10.1117/12.482755

Published

2014-08-01

How to Cite

Riveros Jerez, C. A. (2014). Structural health monitoring methodology for simply supported bridges: numerical implementation. Revista Facultad De Ingeniería Universidad De Antioquia, (39), 42–55. https://doi.org/10.17533/udea.redin.20189