Determination and use of feasible operation region in flash distillation control
DOI:
https://doi.org/10.17533/udea.redin.20190738Keywords:
thermodynamic equilibrium, control strategy, separation processes, feasible operationAbstract
Flash distillation is essentially a single stage mass transfer operation. The flash distillation operation is used in this work to highlight the importance of identifying the zone where a system has an appropriate behavior. In this sense, this paper presents a discussion about the use of the feasible operation region (FOR) in the design of process control structures. For this reason, three control structures are presented. The first one is the traditional one, a PID multiloop control structure. The second structure uses the FOR graphically in order to determine a better operation point and improve the control response. Finally, the third structure uses the FOR numerically for guiding the controller using a modified control structure. The improvement of the closed loop operation of the flash using the last control structure is notorious when compared with the traditional control structure.
Downloads
References
E. Ali, A. Ajbar, and K. Alhumaizi, “Robust control of industrial multi-stage flash desalination plants,” Desalination, vol. 114, no. 3, pp. 289 – 302, 1997. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0011916498000198
D. A. Muñoz, J. L. Diaz, S. Taborda, and H. Alvarez, “Hydrocyclone Phenomenological-Based Model and Feasible Operation Region,” International Journal of Mining, Materials, and Metallurgical Engineering (IJMMME), vol. 3, pp. 1–9, 2017.
S. Walas, Chemical process equipment selection and design. Newton, MA, USA: Butterworth-Heineman., 1998.
F. Blanchini and S. Miani, Set theoric methods in control. Boston, MA, USA: U. of Illinois at Urbana-Champaign., 2008.
J. Calderon, L. Gómez, and H. Alvarez, “Una aproximación a la cuantificación de la controlabilidad de estado,” Información Tecnológica, vol. 26, no. 1, pp. 123–133, 2015.
K. Hangos and I. Cameron, Process modelling and model analysis. San Diego, CA, USA: Academic press., 2001.
E. Hoyos, D. López, and H. Alvarez, “A phenomenologically based material flow model for friction stir welding,” Materials & Design, vol. 111, pp. 321 – 330, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0264127516311698
C. Zuluaga-Bedoya, M. Ruiz-Botero, M. Ospina-Alarcón, and J. Garcia-Tirado, “A dynamical model of an aeration plant for wastewater treatment using a phenomenological based semi-physical modeling methodology,” Computers and Chemical Engineering, vol. 117, pp. 420–432, 2018. [Online]. Available: https://doi.org/10.1016/j.compchemeng.2018.07.008
R. E. Treybal, Operaciones de Transferencia de Masa, second edi ed. México D.F.: McGraw - Hill, 1988.
K. Morales and H. Alvarez, “Flash distillation modeling and a multiloop control proposal,” in 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), Oct 2015, pp. 1–8.
J. Seader, E. Henley, and D. Roper, Separation process principles. Chemical and biochemical operations. New York,NY, USA: John Wiley & Sons. Inc., 2011.
H. Fogler, Elements of chemical reaction engineering. New Delhi,India: Prentince Halll., 2004.
Mankenberk, “Dimensionado de válvulas reguladoras de presión,” Mankenberg, Industriearmeturen Industrial Valves, Tech. Rep., 2017. [Online]. Available: http://www.mankenberg.de/es/77/UPLOAD/pdf/s33{_}5.pdf
C. R. Branan, “Separators / Accumulators,” in Rules of Thumb for Chemical Engineers, fourth edi ed., 2005, ch. Chapter 8, pp. 142–152.
P. C. Wankat, Separation Process Engineering. Includes Mass Transfer Analysis., pearson ed ed., Estados Unidos de América, 2012.
D. Muñoz de la Peña, D. R. Ramírez, E. F. Camacho, and T. Alamo, “Explicit solution of min-max MPC with additive uncertainties and quadratic criterion,” Syst. Control Lett., vol. 55, pp. 266–274, 2006.
C. A. Gómez-Pérez, L. M. Gómez, and H. Alvarez, “Reference trajectory design using state controllability for batch processes,” Industrial & Engineering Chemistry Research, vol. 54, no. 15, pp. 3893–3903, 2015. [Online]. Available: http://dx.doi.org/10.1021/ie504809x
F. Shinskey, Process control systems. Application, design and tuning. New York,NY, USA: McGraw Hill., 1996.
S. Revollar, M. Francisco, P. Vega, and R. Lamanna, “Stochastic optimization for the simultaneous synthesis and control system design of an activated sludge process,” Latin American applied research, vol. 40, no. 2, pp. 137–146, 2010.
P. S. Buckley, W. L. Luyben, and J. P. Shunta, Design of distillation column control systems, Research Triangle Park, Ed. United States of America: Instrument Society of America, 1985.
K. Morales and H. Alvarez, “Operation feasible region for flash distillation control and design,” in 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Oct 2017, pp. 1–6.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter