Analysis and optimization of the spin beam in the CCA-5000 Cuban sugarcane harvester
DOI:
https://doi.org/10.17533/udea.redin.20200804Keywords:
frame, modal analysis, strain gauging, finite element analysis, optimizationAbstract
A linear dynamic study of the tensional status of the unloading conveyor´s spin beam in the new model CCA-5000 Cuban sugarcane harvester is carried out. The dynamic coefficients were determined using a strain gauge experimental evaluation of the KTP-23 harvester, which is a similar model in structure to the CCA-5000. A finite elements analysis is used to obtain the safety distribution factor and the tensions in the beam for different load combinations linked to a dynamic variation curve of the loads. Aiming to verify the presence or not of large amplitudes on the system oscillations caused by the resonance phenomenon, an analysis of the frequency modes for each load status is conducted, and the results are compared with the terrain irregularities frequencies on which the harvester moves. Finally, taking into account the previous results, the shape of the beam is optimized in order to decrease its steel volume.
Downloads
References
J. M. González, R. Pérez, and J. N. Pérez, “Evaluación del corte basal de la cosechadora c-4000 con cuchillas de tres filos,” Revista Ciencias Técnicas Agropecuarias, vol. 21, no. 21, pp. 26–30, Jan. 2012.
Y. Feng and X. Jun, “Modal analysis and improvement of the frame for all-terrain vehicle,” Noise Vib. Worldw, vol. 49, no. 11, September 2018. [Online]. Available: https://doi.org/10.1177/0957456518801146
B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics, vol. 6, no. 6, 2012. [Online]. Available: https://doi.org/10.1038/NPHOTON.2012.90
X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun., vol. 281, no. 2, January 15 2008. [Online]. Available: https://doi.org/10.1016/j.optcom.2007.09.030
C. Remmersmann and S. Stürwald and B. Kemper and P. Langehanenberg and G. V. Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt., vol. 48, no. 8, 2009. [Online]. Available: https://doi.org/10.1364/AO.48.001463
P. S. Considine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am., vol. 56, no. 8, 1966. [Online]. Available: https://doi.org/10.1364/JOSA.56.001001
A. S. Ostrovsky and M. Á. Olvera and P. C. Romero, “Effect of coherence and polarization on frequency resolution in optical fourier transforming system,” Opt. Lett., vol. 36, no. 23, December 2011. [Online]. Available: https://doi.org/10.1364/OL.36.004719
A. S. Ostrovsky and et al, “Modulation of coherence and polarization using liquid crystal spatial light modulators,” Opt. Express, vol. 17, no. 7, March 30 2009. [Online]. Available: https://doi.org/10.1364/oe.17.005257
C. Rickenstorff, E. Flores, M. A. Olvera, and A. S. Ostrovsky, “Modulation of coherence and polarization using nematic 90°-twist liquidcrystal spatial light modulators,” Rev. Mex. Fis., vol. 58, no. 3, pp. 270–273, 2012.
A. S. Ostrovsky and E. Hernández, “Modulation of spatial coherence of optical field by means of liquid crystal light modulator,” Rev. Mex. Fis., vol. 51, no. 5, pp. 442–446, Oct. 2005.
C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in young’s interference experiment,” Phys. Rev. Lett., vol. 98, no. 4, January 25 2009. [Online]. Available: https://doi.org/10.1103/PhysRevLett.98.043908
Y. Gu, C. H. Gan, G. J. Gbur, and T. D. Visser, “Spatial coherence modulation with a subwavelength plasmonic hole array,” in Frontiers in Optics 2012/Laser Science XXVIII, Rochester, New York, United States, 2012, pp. 14–18.
A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics, vol. 8, no. 2, June 2016. [Online]. Available: https://doi.org/10.1364/AOP.8.000200
E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B, vol. 24, no. 12, December 2007. [Online]. Available: https://doi.org/10.1364/JOSAB.24.002940
L. Hu and et al, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express, vol. 12, no. 26, January 2005. [Online]. Available: https://doi.org/10.1364/OPEX.12.006403
R. A. Estrada and E. Gómez, “Análisis numérico-experimental del bastidor principal de la cosechadora de caña KTP-2M,” Inf. tecnológica, vol. 15, no. 4, 2004. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642004000400004
F. J. Colomina, J. Masiá, T. V. Esquerdo, and J. F. Dols, “Modelado estructural de componentes de bastidores de vehículos pesados mediante el método de elementos finitos,” Opt. Express, vol. 17, no. 6, 2006. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642006000600006
J. García-de la Figal and S. Marrero, “Análisis dinámico de carcaza de caja de velocidad,” Ing. Mecánica, vol. 14, no. 2, pp. 151–159, May 2011.
N. V. Dhandapani, G. Mohan, and K. Debnath, “Static analysis of offhigh way vehicle chassis structure for the effect of various stress distributions,” Eur. J. Sci. Res., vol. 73, no. 4, pp. 497–503, 2012.
C. R. Estrada, C. R. Aballes, and C. R. Pérez, “Análisis dinámico del mecanismo paralelogramo del cortacogollo desfibrador para la cosechadora cañera Cubana CCA- 5000,” Rev Cie Téc Agr, vol. 22, no. 1, pp. 5–11, Jan. 2013.
Y. Abreu, R. A. Estrada, and H. Calzadilla, “Análisis dinámico del sistema de dirección de la cosechadora de caña Cubana CCA-5000,” Rev Cie Téc Agr, vol. 24, no. 1, pp. 5–13, Jan. 2015.
R. E. Cingualbres and P. R. Pérez y R. R. Guethón, “Informe Técnico de la evaluación extensométrica del prototipo de cosechadora cañera KTP-23,” Holguín, 1996.
R. A. Estrada and E. Gómez, “Análisis del bastidor principal de la cosechadora de caña a través del método de los elementos finitos,” Ing. Mecánica, vol. 6, no. 3, pp. 45–52, Jan. 2015.
C. A. Chagoyen and et al, “Simulación numérica de los apoyos de puente metálico giratorio,” Ing. Mecánica, vol. 14, no. 3, pp. 170–180, Sep. 2011. [25] N. Díaz and J. N. Pérez, “Metodología para evaluar el impacto de la maquinaria agrícola sobre los recursos naturales del medio ambiente,” Ciencias Holguín, vol. 13, no. 2, pp. 1–12, Apr. 2013.
N. Díaz and J. N. Pérez, “Metodología para evaluar el impacto de la maquinaria agrícola sobre los recursos naturales del medio ambiente,” Ciencias Holguín, vol. 13, no. 2, pp. 1–12, Apr. 2013.
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.