Analysis and optimization of the spin beam in the CCA-5000 Cuban sugarcane harvester

Authors

  • Roberto Andrés Estrada Cingualbres University of Holguín
  • Héctor Calzadilla Dubras Agricultural Machinery Development Centre
  • José Martínez Grave de Peralta University of Holguín
  • Rafael Valera Llanes Agricultural Machinery Development Centre
  • Juan Rafael Pérez Pupo Higher Polytechnic School of Chimborazo https://orcid.org/0000-0001-8781-8662

DOI:

https://doi.org/10.17533/udea.redin.20200804

Keywords:

frame, modal analysis, strain gauging, finite element analysis, optimization

Abstract

A linear dynamic study of the tensional status of the unloading conveyor´s spin beam in the new model CCA-5000 Cuban sugarcane harvester is carried out. The dynamic coefficients were determined using a strain gauge experimental evaluation of the KTP-23 harvester, which is a similar model in structure to the CCA-5000. A finite elements analysis is used to obtain the safety distribution factor and the tensions in the beam for different load combinations linked to a dynamic variation curve of the loads. Aiming to verify the presence or not of large amplitudes on the system oscillations caused by the resonance phenomenon, an analysis of the frequency modes for each load status is conducted, and the results are compared with the terrain irregularities frequencies on which the harvester moves. Finally, taking into account the previous results, the shape of the beam is optimized in order to decrease its steel volume.

|Abstract
= 563 veces | HTML
= 0 veces| | PDF
= 346 veces|

Downloads

Download data is not yet available.

Author Biographies

Roberto Andrés Estrada Cingualbres, University of Holguín

PhD. in Technical Sciences.

Héctor Calzadilla Dubras, Agricultural Machinery Development Centre

Master in CAD-CAM.

José Martínez Grave de Peralta, University of Holguín

M.Sc, Farm Machinery, Faculty of Mechanics.

Rafael Valera Llanes, Agricultural Machinery Development Centre

Master CAD-CAM.

Juan Rafael Pérez Pupo, Higher Polytechnic School of Chimborazo

PhD., Technical Sciences.  

References

J. M. González, R. Pérez, and J. N. Pérez, “Evaluación del corte basal de la cosechadora c-4000 con cuchillas de tres filos,” Revista Ciencias Técnicas Agropecuarias, vol. 21, no. 21, pp. 26–30, Jan. 2012.

Y. Feng and X. Jun, “Modal analysis and improvement of the frame for all-terrain vehicle,” Noise Vib. Worldw, vol. 49, no. 11, September 2018. [Online]. Available: https://doi.org/10.1177/0957456518801146

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics, vol. 6, no. 6, 2012. [Online]. Available: https://doi.org/10.1038/NPHOTON.2012.90

X. Cai and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Opt. Commun., vol. 281, no. 2, January 15 2008. [Online]. Available: https://doi.org/10.1016/j.optcom.2007.09.030

C. Remmersmann and S. Stürwald and B. Kemper and P. Langehanenberg and G. V. Bally, “Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging,” Appl. Opt., vol. 48, no. 8, 2009. [Online]. Available: https://doi.org/10.1364/AO.48.001463

P. S. Considine, “Effects of coherence on imaging systems,” J. Opt. Soc. Am., vol. 56, no. 8, 1966. [Online]. Available: https://doi.org/10.1364/JOSA.56.001001

A. S. Ostrovsky and M. Á. Olvera and P. C. Romero, “Effect of coherence and polarization on frequency resolution in optical fourier transforming system,” Opt. Lett., vol. 36, no. 23, December 2011. [Online]. Available: https://doi.org/10.1364/OL.36.004719

A. S. Ostrovsky and et al, “Modulation of coherence and polarization using liquid crystal spatial light modulators,” Opt. Express, vol. 17, no. 7, March 30 2009. [Online]. Available: https://doi.org/10.1364/oe.17.005257

C. Rickenstorff, E. Flores, M. A. Olvera, and A. S. Ostrovsky, “Modulation of coherence and polarization using nematic 90°-twist liquidcrystal spatial light modulators,” Rev. Mex. Fis., vol. 58, no. 3, pp. 270–273, 2012.

A. S. Ostrovsky and E. Hernández, “Modulation of spatial coherence of optical field by means of liquid crystal light modulator,” Rev. Mex. Fis., vol. 51, no. 5, pp. 442–446, Oct. 2005.

C. H. Gan, G. Gbur, and T. D. Visser, “Surface plasmons modulate the spatial coherence of light in young’s interference experiment,” Phys. Rev. Lett., vol. 98, no. 4, January 25 2009. [Online]. Available: https://doi.org/10.1103/PhysRevLett.98.043908

Y. Gu, C. H. Gan, G. J. Gbur, and T. D. Visser, “Spatial coherence modulation with a subwavelength plasmonic hole array,” in Frontiers in Optics 2012/Laser Science XXVIII, Rochester, New York, United States, 2012, pp. 14–18.

A. Forbes, A. Dudley, and M. McLaren, “Creation and detection of optical modes with spatial light modulators,” Adv. Opt. Photonics, vol. 8, no. 2, June 2016. [Online]. Available: https://doi.org/10.1364/AOP.8.000200

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B, vol. 24, no. 12, December 2007. [Online]. Available: https://doi.org/10.1364/JOSAB.24.002940

L. Hu and et al, “Phase-only liquid crystal spatial light modulator for wavefront correction with high precision,” Opt. Express, vol. 12, no. 26, January 2005. [Online]. Available: https://doi.org/10.1364/OPEX.12.006403

R. A. Estrada and E. Gómez, “Análisis numérico-experimental del bastidor principal de la cosechadora de caña KTP-2M,” Inf. tecnológica, vol. 15, no. 4, 2004. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642004000400004

F. J. Colomina, J. Masiá, T. V. Esquerdo, and J. F. Dols, “Modelado estructural de componentes de bastidores de vehículos pesados mediante el método de elementos finitos,” Opt. Express, vol. 17, no. 6, 2006. [Online]. Available: http://dx.doi.org/10.4067/S0718-07642006000600006

J. García-de la Figal and S. Marrero, “Análisis dinámico de carcaza de caja de velocidad,” Ing. Mecánica, vol. 14, no. 2, pp. 151–159, May 2011.

N. V. Dhandapani, G. Mohan, and K. Debnath, “Static analysis of offhigh way vehicle chassis structure for the effect of various stress distributions,” Eur. J. Sci. Res., vol. 73, no. 4, pp. 497–503, 2012.

C. R. Estrada, C. R. Aballes, and C. R. Pérez, “Análisis dinámico del mecanismo paralelogramo del cortacogollo desfibrador para la cosechadora cañera Cubana CCA- 5000,” Rev Cie Téc Agr, vol. 22, no. 1, pp. 5–11, Jan. 2013.

Y. Abreu, R. A. Estrada, and H. Calzadilla, “Análisis dinámico del sistema de dirección de la cosechadora de caña Cubana CCA-5000,” Rev Cie Téc Agr, vol. 24, no. 1, pp. 5–13, Jan. 2015.

R. E. Cingualbres and P. R. Pérez y R. R. Guethón, “Informe Técnico de la evaluación extensométrica del prototipo de cosechadora cañera KTP-23,” Holguín, 1996.

R. A. Estrada and E. Gómez, “Análisis del bastidor principal de la cosechadora de caña a través del método de los elementos finitos,” Ing. Mecánica, vol. 6, no. 3, pp. 45–52, Jan. 2015.

C. A. Chagoyen and et al, “Simulación numérica de los apoyos de puente metálico giratorio,” Ing. Mecánica, vol. 14, no. 3, pp. 170–180, Sep. 2011. [25] N. Díaz and J. N. Pérez, “Metodología para evaluar el impacto de la maquinaria agrícola sobre los recursos naturales del medio ambiente,” Ciencias Holguín, vol. 13, no. 2, pp. 1–12, Apr. 2013.

N. Díaz and J. N. Pérez, “Metodología para evaluar el impacto de la maquinaria agrícola sobre los recursos naturales del medio ambiente,” Ciencias Holguín, vol. 13, no. 2, pp. 1–12, Apr. 2013.

Downloads

Published

2020-08-24

How to Cite

Estrada Cingualbres, R. A., Calzadilla Dubras, H., Martínez Grave de Peralta, J., Valera Llanes, R., & Pérez Pupo, J. R. (2020). Analysis and optimization of the spin beam in the CCA-5000 Cuban sugarcane harvester . Revista Facultad De Ingeniería Universidad De Antioquia, (102), 96–107. https://doi.org/10.17533/udea.redin.20200804