Fatigue behaviour of a glass coating on Ti6AL4V for biomedical applications
DOI:
https://doi.org/10.17533/udea.redin.343446Keywords:
Hertzian indentation, Cyclic contact fatigue, Sintered glass coating, Biomedical applicationsAbstract
The fixation of bone replacement implants to the hosting tissue can be improved if the implants have a bioactive surface that can precipitate hydroxyapatite in vivo. Titanium alloys, despite their desirable mechanical and nontoxic properties, are not bioactive and, therefore, do not bond directly to the bone. One of the ways to change a bioinert metallic surface is to coat it with a bioactive material. This work presents the evaluation of the fatigue behaviour by Hertzian (spherical) indentation of a glass coating on Ti6Al4V. This coating belongs to the SiO2-CaO-MgO-Na2OK2O- P2O5 system and, despite it can be used for corrosion protection, it has been specifically designed to be used as the inner layer of a bioactive bilayer coating with an outer layer of lower SiO2 content to ensure bioactivity. Hertzian monotonic tests allowed to obtain a damage sequence starting with three brittle damage events (ring, cone and radial cracking) followed by coating delamination associated to the plastic deformation of the substrate. The first brittle damage, ring cracking, was used as criteria for the evaluation of the stress-corrosion and cyclic loading cracking behaviour in air and in distilled water environments. Results showed sensitivity of the coating to degradation under both static and cyclic loadings which was considerably larger in distilled water due to the corrosion susceptibility of this glass. Delamination damage was also sensitive to Hertzian cyclic loading showing two different mechanisms depending of the maximum
Downloads
References
H.S. Dobbs. “Fracture of titanium orthopaedic implants”. J. Mater. Sci. Vol. 17. 1982. pp. 2398-2404. DOI: https://doi.org/10.1007/BF00543750
L. L. Hench. “Bioceramics: from concept to clinic”. J. Am. Ceram. Soc. Vol. 74. 1991. pp. 1487-1510. DOI: https://doi.org/10.1111/j.1151-2916.1991.tb07132.x
W. Suchanek, M. Yoshimura. “Processing and properties of hydroxiapatite-based biomaterials for use as hard tissue replacement implants”. J. Mater. Res. Vol. 13. 1998. pp. 94-117. DOI: https://doi.org/10.1557/JMR.1998.0015
W. R. Lacefield. Hydroxilapatite coating. In An Introduction to Bioceramics, ed. Hench, L.L. and Wilson, J. World Scientific, Singapore, 1993, pp. 223-238. DOI: https://doi.org/10.1142/9789814317351_0012
T. M. Lee, E. Chang, B. C. Wang, Y. C. Yang. “Characteristics of plasma-sprayed bioactive glass coatings on Ti6Al4V alloy: an in vitro study”. Surface Coatings Technology. Vol. 79. 1996, pp. 170-177. DOI: https://doi.org/10.1016/0257-8972(95)02463-8
J. M. Gómez-Vega, E. Saiz, A. P. Tomsia. “Glass-based coatings for titanium implant alloys”. J. Biomed. Mater. Res. Vol.46. 1999. pp. 549-559. DOI: https://doi.org/10.1002/(SICI)1097-4636(19990915)46:4<549::AID-JBM13>3.0.CO;2-M
A. Pazo, E. Saiz, A. P. Tomsia. “Silicate glass coatings on Ti-based implants”. Acta. Mater. Vol. 46. 1998. pp. 2551-2558. DOI: https://doi.org/10.1016/S1359-6454(98)80039-6
A. Pazo, E. Saiz, A. P. Tomsia. “Bioactive coatings on Ti and Ti6Al4V alloys for medical applications”. In Ceramic Microstructures: Control at Atomic Level, ed. Tomsia, A.P. and Glaeser, A.M. Plenum Press. Berkeley. 1998. pp. 543-550. DOI: https://doi.org/10.1007/978-1-4615-5393-9_53
L. L. Hench, R. J. Splinter, W. C. Allen, T. K. Greenlee. “Bonding mechanism at the interface of ceramic prosthetic materials”. Part 1. J. Biomed. Res. Symp. Vol. 2. 1971. pp.117-141. DOI: https://doi.org/10.1002/jbm.820050611
B. R. Lawn. “Indentation of ceramics with spheres: A century after Hertz”. J. Am. Ceram. Soc. 81. 1998. pp. 1977-2071. DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
R. DeLong, W. H. Douglas. “Development of an artificial oral environment for the testing of dental restoratives: biaxial force and movement control”. J. Dent. Res. 62. 1983. pp. 32-36. DOI: https://doi.org/10.1177/00220345830620010801
A. W. Eberhardt, J. L. Lewis, L. M. Keer. “Normal contact of elastic spheres with two elastic layers as a model of joint articulation” ASME J. Biomed. Eng., 113. 1991. pp. 410-417. DOI: https://doi.org/10.1115/1.2895420
I. M. Peterson, A. Pajares, B. R. Lawn, V. P. Thompson, E. D. Rekow. “Mechanical characterization of dental ceramics using Hertzian contacts”. J. Dent. Res. 77. 1998. pp. 589-602. DOI: https://doi.org/10.1177/00220345980770041201
J. Pavón, E. Jiménez-Piqué, M. Anglada, S. López-Esteban, E. Saiz, A. P. Tomsia. “Stress-corrosion cracking by indentation techniques of a glass coating on Ti6Al4V for biomedical applications” J. Eur. Ceram. Soc., in press (on-line).
J. Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, A. P. Tomsia. “Delamination under Hertzian cyclic loading of a glass coating on Ti6Al4V for implants” J. Mat. Sci. (Special Issue 6th Int. Workshop on Interfaces), submitted.
F. C. Frank, B. R. Lawn. “On the theory of Hertzian fracture” Proc. R. Soc. Lond., A 299. 1967. pp. 291-306. DOI: https://doi.org/10.1098/rspa.1967.0137
P. D. Warren. “Determining the fracture toughness of brittle materials by Hertzian indentation”. J. Eur. Ceram. Soc. 15. 1995. pp. 201-207. DOI: https://doi.org/10.1016/0955-2219(95)93941-U
H. Chai, B. R. Lawn, S. J. Wuttiphan. “Fracture modes in brittle coatings with large interlayer modulus mismatch” J. Mat. Res. 9. 1999. pp. 3805-3817. DOI: https://doi.org/10.1557/JMR.1999.0514
Y. W. Rhee, H. Kim, Y. Deng, B. R. Lawn. “Contact induced damage in ceramic coatings on compliant substrate: fracture mechanics and design”. J. Am. Ceram. Soc. 84 2001. pp. 1066-1072. DOI: https://doi.org/10.1111/j.1151-2916.2001.tb00791.x
A. Fischer-Cripps, B. R. Lawn, A. Pajares, L. Wei. “Stress analysis of elastic-plastic contact damage in ceramic coatings on metal substrate”. J. Am. Ceram. Soc. 79. 1996. pp. 2619-2625. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb09024.x
S. M. Wiederhorn. In: Fracture Mechanics of Ceramics, Bradt RC, Hasselman DPH and Lange FF, editors. New York: Plenum, 1974. pp. 613. DOI: https://doi.org/10.1007/978-1-4615-7014-1_12
Michaelske, T. A., Freiman, S. W. “A molecular mechanism of stress corrosion in silica” J. Am. Ceram. Soc. 66. 1983. pp. 284. DOI: https://doi.org/10.1111/j.1151-2916.1983.tb15715.x
B. R. Lawn. Fracture of brittle solids, 2nd Ed., Cambridge University Press, Cambridge, 1993, p. 249. DOI: https://doi.org/10.1017/CBO9780511623127
H. Mould, R. D. Southwick, “Strength and static fatigue of abraded glass under controlled ambient conditions” J. Am. Ceram. Soc. 42. 1959. pp. 582-592. DOI: https://doi.org/10.1111/j.1151-2916.1959.tb13578.x
C. Barry, P.S. Nicholson. “Stress-corrosion cracking of a bioactive glass”. Adv. Ceram. Mater. 3. 1998. pp. 127-130. DOI: https://doi.org/10.1111/j.1551-2916.1988.tb00185.x
A.G. Evans, E.R. Fuller. “Crack propagation in ceramic materials under cyclic loading conditions”. Metall. Trans. 5. 1974. pp. 27-33. DOI: https://doi.org/10.1007/BF02642921
R. Dauskardt, R. O. Ritchie. “Cyclic fatigue of ceramics”. In: Proc. Of the Eng. Foundation Conf. on fatigue of Adv. Mat. 1991. pp.133.
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.