Catalytic oxidation of α-pinene with methyltrioxorhenium immobilized onto polymeric resins
DOI:
https://doi.org/10.17533/udea.redin.344340Keywords:
methyltrioxorhenium, polyvinylpyridine, heterogenization, α-pinene, catalytic oxidation, hydrogen peroxideAbstract
The immobilization of methyltrioxorhenium (MTO) on vinylpyridine based resins synthesized by several procedures was investigated. Catalysts were characterized by IR and UV-VIS spectroscopy. Nitrogen and rhenium contents were determined by ICP-MS. The presence of ReO3 and ReO groups in the heterogenized catalysts was determined by FTIR analysis. New bands were observed in the UV-VIS spectra after treating the supports with MTO. The efficiency of incorporation of Rhenium was higher on PVP and CpPVP copolymers, and support oxidation decreased MTO incorporation on the support. Catalysts were tested for α-pinene oxidation with hydrogen peroxide. Low á-pinene (7%) conversions were obtained over PVP supported catalysts but, epoxide selectivity was high (92%). The highest á-pinene conversion, 50%, was obtained over MTO supported on copolymerized and oxidized supports. Epoxide rearrangement products, campholenic aldehyde and sobrerol, were the main products obtained with MeCN/DCM as solvent. In general, the oxidant efficiency was low, and it was favored in terbutanol and ethyl acetate as solvents.
Downloads
References
Suh, Y.W. et al. “Redox-mesoporous molecular sieves as bifunctional catalyst for the one-pot synthesis of campholenic aldehyde from α-pinene”. En: J. Mol. Catal. A. 2001. Vol. 174. p. 249. DOI: https://doi.org/10.1016/S1381-1169(01)00192-3
Fdil, N. et al. “Terpenic olefin epoxidation using metals acetylacetonates as catalysts”. En: J. Mol. Catal. A. 1996. Vol. 108. p. 15. DOI: https://doi.org/10.1016/1381-1169(95)00284-7
Madhava, Reddy et al. “Cobalt catalyzed oxidation of cyclic alkenes with molecular oxygen: allylic oxidation versus double bond attack”. En: Tetrahedron Lett. 1995. Vol. 36. N.° 1. p. 159. DOI: https://doi.org/10.1016/0040-4039(94)02200-U
Romão, C. C. et al. “Rhenium (VII) –oxo and imido complexes: synthesis, structures and applications”. En: Chem. Rev. 1997. N.° 97. p. 3246. DOI: https://doi.org/10.1021/cr9703212
Villa de P., A. L. “Epoxidation of monoterpenes by homogeneous and heterogeneous catalytic systems”. Disertaciones de Agricultura. Tesis Doctoral. Katholieke Universiteit Leuven. Bélgica, 2000. 172 p.
Texeira Gómez, M. F. y Antunes, O. A. C. “Autoxidation of limonene, -pinene and β-pinene by dioxygen catalyzed by Co(OAc)2/bromide”. En: J. Mol. Catal. A. 1997. N.° 121. p. 145. DOI: https://doi.org/10.1016/S1381-1169(97)00010-1
Komiya, N. et al. “Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether”. En: J. Mol. Catal. A. 1997. N.° 117. p. 21. DOI: https://doi.org/10.1016/S1381-1169(96)00263-4
Kholdeeva, O. A. et al. “Selective alkene epoxidation by molecular oxygen in the presence of aldehyde and different type catalysts containing cobalt”. En: Stud. Surf. Sci. Catal. Vol. 110. Proceedings of the 3rd world congress on oxidation catalysis. San Diego, C.A., USA. Sep. 21-26, 1997. DOI: https://doi.org/10.1016/S0167-2991(97)81058-0
Rudler, H. et al. “Assessment of MTO as a catalyst for the synthesis of acid sensible epoxides: Use of the biphasic system H2O2/CH2Cl2 with and without bipyridine and influence of the substituents on the double bonds”. En: J. Mol. Catal. A. 1998. Vol. 133. p. 255. DOI: https://doi.org/10.1016/S1381-1169(97)00278-1
González, L. M.; Villa, A. L.; Gelbard, G. y Montes, C. “Efecto del solvente y del ligando en la epoxidación de -pineno con el sistema metiltrioxorenio/peróxido de hidrógeno (MTO/H2O2)”. En: Revista Facultad de Ingeniería. N.° 30. p. 61. 2003. Universidad de Antioquia. Medellín, Colombia.
Kühn, F. E. et al. “Trigonal-bypiramidal Lewis base adducts of methyltrioxorhenium (VII) and their bisperoxo congeners: characterization application in catalytic epoxidation and density functional mechanistic study”. En: Chem. Eur. J. 1999. Vol. 5. N.° 12. p. 3603. DOI: https://doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3603::AID-CHEM3603>3.0.CO;2-W
Piquemal, J. Y. et al. “Evidence for the presence of Mo (VI), W (VI) or Re (VII) species in silica-based materials. New approaches to highly dispersed oxo-species in mesoporous silicates”. En: Chem. Commun. 1999. p. 1195. DOI: https://doi.org/10.1039/a902537e
Buffon, R. et al. “Surface organometallic chemistry of rhenium: attemtps to characterize a surface carbene in metathesis of olefins with the catalyst CH3ReO3/Nb2O5”. En: J. Mol. Catal. 1992. Vol. 72. DOI: https://doi.org/10.1016/0304-5102(92)80038-I
Adam, W. et al. “NaY zeolite as host for the selective heterogeneous oxidation of silanes and olefins with hydrogen peroxide catalyzed by methyltrioxorhenium”. En: J. Org. Chem. 2000. Vol. 65. p. 2894. DOI: https://doi.org/10.1021/jo991908e
Wang, T. J. et al. “Silica supported methyltrioxorhenium complex of γ-(2,2’-dipyridyl)-Amino propylpolysiloxane as a novel catalyst for epoxidation of alkenes”. En: J.M.S. Pure Appl. Chem. 1998. Vol. A35. N.° 3. p. 531. DOI: https://doi.org/10.1080/10601329808001994
Dallmann, K. y Buffon, R. “Sol-gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins”. En: Catal. Commun. 2000. Vol. 1. N.os 1-4. p. 9. DOI: https://doi.org/10.1016/S1566-7367(00)00005-4
Herrmann, W. A. et al. “Use of organorhenium compounds for the oxidation of multiple C-C bonds, oxidation processes based thereon and novel organorhenium compounds”. En: United States Patent 5,155,247. Oct. 13, 1992.
Saladino, R. “Preparation and structural characterization of polymer-supported methylrhenium trioxide systems as efficient and selective catalyts for the epoxidation of olefins”. En: J. Org. Chem. 2002. Vol. 67. N.° 4. p. 1323. DOI: https://doi.org/10.1021/jo011033f
Saladino, R. et al. “Selective epoxidation of monoterpenes with H2O2 and polymer-supported methylrheniumtrioxide systems”. En: Tetrahedron. 2003. Vol. 59. pp. 7403-7408. DOI: https://doi.org/10.1016/S0040-4020(03)01145-1
Adolfsson, N. et al. “Comparison of amine additives most effective in the new methyltrioxorhenium-catalyzed epoxidation process”. En: Tetrahedron Lett. 1999. Vol. 40. N.° 21. p. 3991. DOI: https://doi.org/10.1016/S0040-4039(99)00661-9
Nunes, C. D. et al. “Synthesis and characterization of methyltrioxorhenium (VII) immobilized in bipyridylfunctionalized mesoporous silica”. En: Eur. J. Inorg. Chem. 2002. p. 1100. DOI: https://doi.org/10.1002/1099-0682(200205)2002:5<1100::AID-EJIC1100>3.0.CO;2-B
Malek, A. y Ozin, G. “On the nature of methyltrioxorhenium (VII) encapsulated in zeolite Y”. En: Adv. Mater. 1995. Vol. 7. N.° 2. p. 160. DOI: https://doi.org/10.1002/adma.19950070212
Downloads
Published
How to Cite
Issue
Section
License
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.