Catalytic oxidation of α-pinene with methyltrioxorhenium immobilized onto polymeric resins

Authors

  • Lina María González R. Universidad de Antioquia
  • Aída Luz Villa de P. Universidad de Antioquia
  • Georges Gelbard Institut de Recherches sur la Catalyse
  • Consuelo Montes de C. Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.344340

Keywords:

methyltrioxorhenium, polyvinylpyridine, heterogenization, α-pinene, catalytic oxidation, hydrogen peroxide

Abstract

The immobilization of methyltrioxorhenium (MTO) on vinylpyridine based resins synthesized by several procedures was investigated. Catalysts were characterized by IR and UV-VIS spectroscopy. Nitrogen and rhenium contents were determined by ICP-MS. The presence of ReO3 and ReO groups in the heterogenized catalysts was determined by FTIR analysis. New bands were observed in the UV-VIS spectra after treating the supports with MTO. The efficiency of incorporation of Rhenium was higher on PVP and CpPVP copolymers, and support oxidation decreased MTO incorporation on the support. Catalysts were tested for α-pinene oxidation with hydrogen peroxide. Low á-pinene (7%) conversions were obtained over PVP supported catalysts but, epoxide selectivity was high (92%). The highest á-pinene conversion, 50%, was obtained over MTO supported on copolymerized and oxidized supports. Epoxide rearrangement products, campholenic aldehyde and sobrerol, were the main products obtained with MeCN/DCM as solvent. In general, the oxidant efficiency was low, and it was favored in terbutanol and ethyl acetate as solvents.

|Abstract
= 127 veces | PDF (ESPAÑOL (ESPAÑA))
= 52 veces|

Downloads

Download data is not yet available.

Author Biographies

Lina María González R., Universidad de Antioquia

Departamento de Ingeniería Química

Aída Luz Villa de P., Universidad de Antioquia

Departamento de Ingeniería Química

Consuelo Montes de C., Universidad de Antioquia

Departamento de Ingeniería Química

References

Suh, Y.W. et al. “Redox-mesoporous molecular sieves as bifunctional catalyst for the one-pot synthesis of campholenic aldehyde from α-pinene”. En: J. Mol. Catal. A. 2001. Vol. 174. p. 249. DOI: https://doi.org/10.1016/S1381-1169(01)00192-3

Fdil, N. et al. “Terpenic olefin epoxidation using metals acetylacetonates as catalysts”. En: J. Mol. Catal. A. 1996. Vol. 108. p. 15. DOI: https://doi.org/10.1016/1381-1169(95)00284-7

Madhava, Reddy et al. “Cobalt catalyzed oxidation of cyclic alkenes with molecular oxygen: allylic oxidation versus double bond attack”. En: Tetrahedron Lett. 1995. Vol. 36. N.° 1. p. 159. DOI: https://doi.org/10.1016/0040-4039(94)02200-U

Romão, C. C. et al. “Rhenium (VII) –oxo and imido complexes: synthesis, structures and applications”. En: Chem. Rev. 1997. N.° 97. p. 3246. DOI: https://doi.org/10.1021/cr9703212

Villa de P., A. L. “Epoxidation of monoterpenes by homogeneous and heterogeneous catalytic systems”. Disertaciones de Agricultura. Tesis Doctoral. Katholieke Universiteit Leuven. Bélgica, 2000. 172 p.

Texeira Gómez, M. F. y Antunes, O. A. C. “Autoxidation of limonene, -pinene and β-pinene by dioxygen catalyzed by Co(OAc)2/bromide”. En: J. Mol. Catal. A. 1997. N.° 121. p. 145. DOI: https://doi.org/10.1016/S1381-1169(97)00010-1

Komiya, N. et al. “Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether”. En: J. Mol. Catal. A. 1997. N.° 117. p. 21. DOI: https://doi.org/10.1016/S1381-1169(96)00263-4

Kholdeeva, O. A. et al. “Selective alkene epoxidation by molecular oxygen in the presence of aldehyde and different type catalysts containing cobalt”. En: Stud. Surf. Sci. Catal. Vol. 110. Proceedings of the 3rd world congress on oxidation catalysis. San Diego, C.A., USA. Sep. 21-26, 1997. DOI: https://doi.org/10.1016/S0167-2991(97)81058-0

Rudler, H. et al. “Assessment of MTO as a catalyst for the synthesis of acid sensible epoxides: Use of the biphasic system H2O2/CH2Cl2 with and without bipyridine and influence of the substituents on the double bonds”. En: J. Mol. Catal. A. 1998. Vol. 133. p. 255. DOI: https://doi.org/10.1016/S1381-1169(97)00278-1

González, L. M.; Villa, A. L.; Gelbard, G. y Montes, C. “Efecto del solvente y del ligando en la epoxidación de -pineno con el sistema metiltrioxorenio/peróxido de hidrógeno (MTO/H2O2)”. En: Revista Facultad de Ingeniería. N.° 30. p. 61. 2003. Universidad de Antioquia. Medellín, Colombia.

Kühn, F. E. et al. “Trigonal-bypiramidal Lewis base adducts of methyltrioxorhenium (VII) and their bisperoxo congeners: characterization application in catalytic epoxidation and density functional mechanistic study”. En: Chem. Eur. J. 1999. Vol. 5. N.° 12. p. 3603. DOI: https://doi.org/10.1002/(SICI)1521-3765(19991203)5:12<3603::AID-CHEM3603>3.0.CO;2-W

Piquemal, J. Y. et al. “Evidence for the presence of Mo (VI), W (VI) or Re (VII) species in silica-based materials. New approaches to highly dispersed oxo-species in mesoporous silicates”. En: Chem. Commun. 1999. p. 1195. DOI: https://doi.org/10.1039/a902537e

Buffon, R. et al. “Surface organometallic chemistry of rhenium: attemtps to characterize a surface carbene in metathesis of olefins with the catalyst CH3ReO3/Nb2O5”. En: J. Mol. Catal. 1992. Vol. 72. DOI: https://doi.org/10.1016/0304-5102(92)80038-I

Adam, W. et al. “NaY zeolite as host for the selective heterogeneous oxidation of silanes and olefins with hydrogen peroxide catalyzed by methyltrioxorhenium”. En: J. Org. Chem. 2000. Vol. 65. p. 2894. DOI: https://doi.org/10.1021/jo991908e

Wang, T. J. et al. “Silica supported methyltrioxorhenium complex of γ-(2,2’-dipyridyl)-Amino propylpolysiloxane as a novel catalyst for epoxidation of alkenes”. En: J.M.S. Pure Appl. Chem. 1998. Vol. A35. N.° 3. p. 531. DOI: https://doi.org/10.1080/10601329808001994

Dallmann, K. y Buffon, R. “Sol-gel derived hybrid materials as heterogeneous catalysts for the epoxidation of olefins”. En: Catal. Commun. 2000. Vol. 1. N.os 1-4. p. 9. DOI: https://doi.org/10.1016/S1566-7367(00)00005-4

Herrmann, W. A. et al. “Use of organorhenium compounds for the oxidation of multiple C-C bonds, oxidation processes based thereon and novel organorhenium compounds”. En: United States Patent 5,155,247. Oct. 13, 1992.

Saladino, R. “Preparation and structural characterization of polymer-supported methylrhenium trioxide systems as efficient and selective catalyts for the epoxidation of olefins”. En: J. Org. Chem. 2002. Vol. 67. N.° 4. p. 1323. DOI: https://doi.org/10.1021/jo011033f

Saladino, R. et al. “Selective epoxidation of monoterpenes with H2O2 and polymer-supported methylrheniumtrioxide systems”. En: Tetrahedron. 2003. Vol. 59. pp. 7403-7408. DOI: https://doi.org/10.1016/S0040-4020(03)01145-1

Adolfsson, N. et al. “Comparison of amine additives most effective in the new methyltrioxorhenium-catalyzed epoxidation process”. En: Tetrahedron Lett. 1999. Vol. 40. N.° 21. p. 3991. DOI: https://doi.org/10.1016/S0040-4039(99)00661-9

Nunes, C. D. et al. “Synthesis and characterization of methyltrioxorhenium (VII) immobilized in bipyridylfunctionalized mesoporous silica”. En: Eur. J. Inorg. Chem. 2002. p. 1100. DOI: https://doi.org/10.1002/1099-0682(200205)2002:5<1100::AID-EJIC1100>3.0.CO;2-B

Malek, A. y Ozin, G. “On the nature of methyltrioxorhenium (VII) encapsulated in zeolite Y”. En: Adv. Mater. 1995. Vol. 7. N.° 2. p. 160. DOI: https://doi.org/10.1002/adma.19950070212

Published

2004-11-03

How to Cite

González R., L. M., Villa de P., A. L. ., Gelbard, G., & Montes de C., C. (2004). Catalytic oxidation of α-pinene with methyltrioxorhenium immobilized onto polymeric resins. Revista Facultad De Ingeniería Universidad De Antioquia, (32), 39–50. https://doi.org/10.17533/udea.redin.344340