ADHE: A tool to characterize higher education dropout phenomenon

Authors

DOI:

https://doi.org/10.17533/udea.redin.20230519

Keywords:

Student dropout proportion, academic analytic, dashboard, Data visualization, higher education

Abstract

The field of academic analytics emerged in higher education institutions (HEI) because of developments in database technologies and the generalization of data-mining practices and business intelligence tools. We have designed and implemented a dashboard called ADHE (Academic Analytical Dashboard in Higher Education) for a Colombian higher education institution. The purpose of ADHE is to help administrators of academic programs in their decision-making process regarding the analysis of the phenomenon of student dropout. We used the pipeline methodology for processing large volumes of data was used, which is based on five phases: data acquisition, integration, cleaning, transformation, and visualization. All phases were carried out in the R programming language using academic information sources from the Faculty of Engineering of the Universidad de Antioquia and the Colombian Institute for the Evaluation of Education. The dashboard ADHE is open for free and can be consulted at:  https://fhernanb.shinyapps.io/AppPermanencia/. The main findings were that social stratum, gender, and type of high school are associated with the student dropout phenomenon. Furthermore, in social stratum 1, male students and public high schools tend to have a higher student dropout proportion. Additionally, we conclude that admission to engineering programs requires a balance of qualitative and quantitative abilities. The dashboard ADHE should be used to help students, parents, teachers, and administrators understand student dropout dynamics.

|Abstract
= 1044 veces | HTML
= 0 veces| | PDF
= 267 veces|

Downloads

Download data is not yet available.

Author Biographies

Oscar Daniel Rivera-Baena, Universidad de Antioquia

Professor, Industrial Engineering Department

Carmen Elena Patiño-Rodríguez, Universidad de Antioquia

ALIADO Research Group, Industril Engineering Department

Olga Cecilia Úsuga-Manco, Universidad de Antioquia

Grupo de Investigación ALIADO, Departamento de Ingeniería Industrial 

 

Freddy Hernández-Barajas, Universidad Nacional de Colombia

Professor, Statistcs Departament

References

U. Sivarajah, M. M. Kamal, Z. Irani, and V. Weerakkody, “Critical analysis of Big Data challenges and analytical methods,” J. Bus. Res., vol. 70, pp. 263–286, 2017, doi: 10.1016/j.jbusres.2016.08.001.

T. Catarci, M. Scannapieco, M. Console, and C. Demetrescu, “My (fair) big data,” Proc. - 2017 IEEE Int. Conf. Big Data, Big Data 2017, vol. 2018-Janua, no. January 2018, pp. 2974–2979, 2017, doi: 10.1109/BigData.2017.8258267.

B. K. Daniel and R. Butson, “Technology Enhanced Analytics (TEA) in Higher Education,” in International Association for the Development of the Information Society, 2013, pp. 89–96.

B. Daniel, “Big Data and analytics in higher education: Opportunities and challenges,” Br. J. Educ. Technol., vol. 46, no. 5, pp. 904–920, 2015, doi: 10.1111/bjet.12230.

S. A. Ferreira and A. Andrade, “Academic Analytics: Anatomy of an exploratory essay,” Educ. Inf. Technol., vol. 21, no. 1, pp. 229–243, 2016, doi: 10.1007/s10639-014-9317-9.

R. Chen, “Institutional Characteristics and College Student Dropout Risks: A Multilevel Event History Analysis,” Res. High. Educ., vol. 53, no. 5, 2012, doi: 10.1007/s11162-011-9241-4.

M. V. López-Pérez, M. C. Pérez-López, and L. Rodríguez-Ariza, “Blended learning in higher education: Students’ perceptions and their relation to outcomes,” Comput. Educ., vol. 56, no. 3, 2011, doi: 10.1016/j.compedu.2010.10.023.

A. P. Rovai, “Sense of community, perceived cognitive learning, and persistence in asynchronous learning networks,” Internet High. Educ., vol. 5, no. 4, 2002, doi: 10.1016/S1096-7516(02)00130-6.

Guerrero S. C., “Caracterización de la deserción en la Universidad Pedagógica y Tecnológica de Colombia durante el período 2008-2015,” Rev. Lasallista Investig., vol. 15, no. 1, pp. 16–18, 2018, doi: 10.22507/rli.v15n1a2.

Y. Quintero, “Diseño de un modelo predictivo para generar alertas tempranas de deserción universitaria en los programas de pregrado presenciales de la Facultad de Ingeniería de la Universidad de Antioquia,” Universidad de Antioquia, 2022.

R. Parra, C., Castañeda, E., Guillermo, R., Usuga, O., Duque, P., & Mendoza, “¿La deserción y la graduación no diferencian a los programas de pregrado de la facultad de Ingeniería de la Universidad de Antioquía?,” 2014.

L. P. Navas, F. Montes, S. Abolghasem, R. J. Salas, M. Toloo, and R. Zarama, “Colombian higher education institutions evaluation,” Socioecon. Plann. Sci., vol. 71, 2020, doi: 10.1016/j.seps.2020.100801.

U. bin Mat, N. Buniyamin, P. M. Arsad, and R. Kassim, “An Overview of Using Academic Analytics to Predict and Improve Students’ Achievement: A Proposed Proactive Intelligent Intervention,” in IEEE 5th Conference on Engineering Education (ICEED), 2013, pp. 126–130.

W. Terraza-Beleño, “Estrategias de retención estudiantil en educación superior y su relación con la deserción,” Rev. Electrónica en Educ. y Pedagog., vol. 3, no. 4, pp. 39–56, 2019.

J. Géryk and L. Popelínský, “Visual Analytics for Increasing Efficiency of Higher Education Institutions,” in International Conference on Business Information Systems, 2014, pp. 117–127, doi: 10.1007/978-3-319-11460-6.

L. F.-S. P. Chinome-Becerra, C. Ruiz-Cardenas, “Priorización de variables en el diseño de un sistema de gestión integral de la deserción estudiantil,” Rev. Educ. en Ing., vol. 11, no. 22, pp. 69–77, 2016.

Y. Y. Wong, “Academic analytics: A meta-analysis of its applications in higher education,” Int. J. Serv. Stand., vol. 11, no. 2, pp. 176–192, 2016, doi: 10.1504/IJSS.2016.077957.

T. C. L. Turizo, K. García, S. Soto, Z. Fragozo, T. J. Crissien “Estudio sobre la deserción y la no graduación en la Corporación Universidad de la Costa, Colombia” Rev. UNIMAR, vol. 37, no. 2, pp. 13–25, 2019.

E. Castañeda, “Rendimiento académico de los estudiantes en el primer semestre: Facultad de Ingeniería cohortes 2016-1 y 2015-1” Rev. Ing. Soc., vol. 11, 2016.

J. G. Villegas, C. P. Carolina, and E. C. Gómez, “Planning and performance measurement in higher education: three case studies of operational research application,” Rev. Fac. Ing., no. 100, 2021, doi: 10.17533/udea.redin.20210526.

P. Murnion and M. Helfer, “Academic Analytics in quality assurance using organizational analytical capabilities,” 2013.

M. Komenda et al., “Curriculum Mapping with Academic Analytics in Medical and Healthcare Education,” PLoS One, vol. 10, no. 12, pp. 1–18, 2015, doi: 10.1371/journal.pone.0143748.

M. Sharkey, “Academic analytics landscape at the University Of Phoenix,” ACM Int. Conf. Proceeding Ser., pp. 122–126, 2011, doi: 10.1145/2090116.2090135.

E. J. M. Lauría, J. D. Baron, M. Devireddy, V. Sundararaju, and S. M. Jayaprakash, “Mining academic data to improve college student retention,” 2012, doi: 10.1145/2330601.2330637.

E. J. M. Lauría, E. W. Moody, S. M. Jayaprakash, N. Jonnalagadda, and J. D. Baron, “Open Academic Analytics Initiative: Initial Research Findings,” in LAK ’13: Proceedings of the Third International Conference on Learning Analytics and Knowledge, 2013, pp. 150–154, doi: 10.1145/2460296.2460325.

A. M. DeRocchis, A. Michalenko, and S. J. Boucheron, Laura E. Stochaj, “Extending academic analytics to engineering education,” in Frontiers in Education Conference, FIE, 2018, pp. 1–5, doi: 10.1109/FIE.2018.8658373.

L. C. Hafer, N. M. Gibson, T. T. York, H. R. Fiester, and R. Tsemunhu, “An Examination of Student Retention at a 2-Year College Through Structural Equation Modeling,” J. Coll. Student Retent. Res. Theory Pract., vol. 22, no. 4, Feb. 2021, doi: 10.1177/1521025118770813.

A. M. Rodriguez, “Academic Analytics: Aplicando Técnicas De Business Intelligence Sobre Datos De Performance Académica En Enseñanza Superior,” Interfaces Científicas - Exatas e Tecnológicas, vol. 1, no. 2, pp. 35–46, 2015, doi: 10.17564/2359-4942.2015v1n2p35-46.

C. Shi, S. Fu, Q. Chen, and H. Qu, “VisMOOC: Visualizing video clickstream data from massive open online courses,” 2015, doi: 10.1109/PACIFICVIS.2015.7156373.

H. He, O. Zheng, and B. Dong, “VUSphere: Visual Analysis of Video Utilization in Online Distance Education,” in IEEE Conference on Visual Analytics Science and Technology (VAST), 2018, pp. 25–35, doi: 10.1109/VAST.2018.8802383.

Y. Chen, Q. Chen, Z. Mingqian, S. Boyer, K. Veeramachaneni, and H. Qu, “DropoutSeer: Visualizing learning patterns in Massive Open Online Courses for dropout reasoning and prediction,” in IEEE Conference on Visual Analytics Science and Technology (VAST), 2016, pp. 111–120, doi: 10.1109/VAST.2016.7883517.

M. McNaughton, L. Rao, and G. Mansingh, “An agile approach for academic analytics: a case study,” J. Enterp. Inf. Manag., vol. 30, no. 5, pp. 701–722, 2017, doi: 10.1108/JEIM-06-2016-0121.

ICFES, “Bases de datos,” 2020. .

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson, “shiny: Web Application Framework for R.” 2020.

W. Chang and B. Borges-Ribeiro, “shinydashboard: Create Dashboards with ‘Shiny.’” 2018.

V. Perrier, F. Meyer, and D. Granjon, “shinyWidgets: Custom Inputs Widgets for Shiny.” 2020.

H. Wickham, ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

C. Sievert, Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC, 2020.

H. Wickham, R. François, L. Henry, and K. Müller, “dplyr: A Grammar of Data Manipulation.” 2020.

Y. Xie, J. Cheng, and X. Tan, “DT: A Wrapper of the JavaScript Library ‘DataTables.’” 2020.

S. Garnier, “viridis: Default Color Maps from ‘matplotlib.’” 2018.

Downloads

Published

2023-05-02

How to Cite

Rivera-Baena, O. D., Patiño-Rodríguez, C. E., Úsuga-Manco, O. C., & Hernández-Barajas, F. (2023). ADHE: A tool to characterize higher education dropout phenomenon. Revista Facultad De Ingeniería Universidad De Antioquia, (111), 64–75. https://doi.org/10.17533/udea.redin.20230519