Different electrochemical energy storage systems in a smart microgrid

Authors

  • Óscar Izquierdo-Monge Centro de Investigación Energética, Medioambientales y Tecnologías CIEMAT https://orcid.org/0000-0003-3963-2446
  • Marcos Martínez-Gurría El Centro de Desarrollo de Energías Renovables (CEDER)
  • Paula Peña-Carro El Centro de Desarrollo de Energías Renovables (CEDER) https://orcid.org/0000-0001-7556-5557
  • Angel Zorita-Lamadrid Universidad de Valladolid https://orcid.org/0000-0001-7593-691X
  • Ángel Hernández-Jiménez Centro de Desarrollo de Energías Renovables (CEDER) https://orcid.org/0000-0002-2142-0528
  • Luis Alvira-Ballano Centro de Investigación Energética, Medioambientales y Tecnologías CIEMAT

DOI:

https://doi.org/10.17533/udea.redin.20240940

Keywords:

Batteries, energy management, microgrid

Abstract

As the utilization of renewable energy continues to grow, microgrids have played a vital role in their generation. Batteries have emerged as the most commonly utilized storage system to effectively store this energy. This paper proposes a novel approach to manage energy consumption at the Centre for the Development of Renewable Energy (CEDER) by leveraging both lithium-ion and lead-acid batteries. This computer-based management system controls the flow of energy that can be charged or discharged in 15-minute intervals. By optimizing the use of both battery types, the energy consumption of CEDER has been reduced by an estimated 90 to 200 kWh, depending on the specific case study.

|Abstract
= 86 veces | PDF
= 32 veces|

Downloads

Download data is not yet available.

Author Biographies

Óscar Izquierdo-Monge, Centro de Investigación Energética, Medioambientales y Tecnologías CIEMAT

Higher Research Technique, Energy. Centro de Desarrollo de Energías Renovables (CEDER)

Marcos Martínez-Gurría, El Centro de Desarrollo de Energías Renovables (CEDER)

Ingeniero Mecánico

Paula Peña-Carro, El Centro de Desarrollo de Energías Renovables (CEDER)

Investigadora (Energía / Microrredes)

Angel Zorita-Lamadrid, Universidad de Valladolid

Profesor Titular (Ingeniería Eléctrica)

Ángel Hernández-Jiménez, Centro de Desarrollo de Energías Renovables (CEDER)

Técnico de Investigación (Energia)

Luis Alvira-Ballano, Centro de Investigación Energética, Medioambientales y Tecnologías CIEMAT

MSc Industrial Engineering

References

V. Leite, “Design of a smart microgrid with small-scale hydro generation: a practical case study,” Revista Facultad de Ingenieria, no. 106, pp. 77–92, 2023, doi: 10.17533/udea.redin.20220577.

M. Debouza, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin, “Survey on microgrids with flexible boundaries: Strategies, applications, and future trends,” Electric Power Systems Research, vol. 205, no. January, p. 107765, 2022, doi: 10.1016/j.epsr.2021.107765.

D. Q. Oliveira et al., “A critical review of energy storage technologies for microgrids,” Energy Systems, no. 0123456789, 2021, doi: 10.1007/s12667-021-00464-6.

K. Gandhi and S. K. Gupta, “Operational strategies and electricity market structure of microgrid: A critical review,” Renewable Energy Focus, vol. 39, no. December, pp. 163–171, 2021, doi: 10.1016/j.ref.2021.09.001.

S. Obara, S. Fujimoto, K. Sato, and Y. Utsugi, “Planning renewable energy introduction for a microgrid without battery storage,” Energy, vol. 215, p. 119176, Jan. 2021, doi: 10.1016/J.ENERGY.2020.119176.

M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on methods, solutions, and prospects,” Appl Energy, vol. 222, no. March, pp. 1033–1055, 2018, doi: 10.1016/j.apenergy.2018.04.103.

M. Ospina-Quiroga and E. Mojica-Nava, “Distributed optimal control for distribution systems with microgrids,” Revista Facultad de Ingenieria, no. 105, pp. 98–110, 2022, doi: 10.17533/udea.redin.20211164.

S. Leonori, A. Martino, F. M. Frattale Mascioli, and A. Rizzi, “Microgrid Energy Management Systems Design by Computational Intelligence Techniques,” Appl Energy, vol. 277, no. June, p. 115524, 2020, doi: 10.1016/j.apenergy.2020.115524.

G. Sidarth, M. Seyedmahmoudian, E. Jamei, and B. Horan, “Role of optimization techniques in microgrid energy management systems — A review,” Energy Strategy Reviews, vol. 43, no. June 2021, p. 100899, 2022, doi: 10.1016/j.esr.2022.100899.

M. F. Zia, M. Nasir, E. Elbouchikhi, M. Benbouzid, J. C. Vasquez, and J. M. Guerrero, “Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation,” Renewable and Sustainable Energy Reviews, vol. 159, no. January, p. 112093, 2022, doi: 10.1016/j.rser.2022.112093.

L. C. S. Rocha, P. Rotella Junior, G. Aquila, and K. Janda, “Utility-scale energy storage systems: World condition and Brazilian perspectives,” J Energy Storage, vol. 52, p. 105066, Aug. 2022, doi: 10.1016/J.EST.2022.105066.

S. Dhundhara, Y. P. Verma, and A. Williams, “Techno-economic analysis of the lithium-ion and lead-acid battery in microgrid systems,” Energy Convers Manag, vol. 177, pp. 122–142, Dec. 2018, doi: 10.1016/J.ENCONMAN.2018.09.030.

W. Wang, B. Yuan, Q. Sun, and R. Wennersten, “Application of energy storage in integrated energy systems — A solution to fluctuation and uncertainty of renewable energy,” J Energy Storage, vol. 52, p. 104812, Aug. 2022, doi: 10.1016/J.EST.2022.104812.

J. Das, “Spectrum analysis for deterministic storage sizing in an isolated microgrid,” Mater Today Proc, vol. 58, pp. 359–366, 2022, doi: 10.1016/j.matpr.2022.02.269.

M. Amini, A. Khorsandi, B. Vahidi, S. H. Hosseinian, and A. Malakmahmoudi, “Optimal sizing of battery energy storage in a microgrid considering capacity degradation and replacement year,” Electric Power Systems Research, vol. 195, p. 107170, Jun. 2021, doi: 10.1016/J.EPSR.2021.107170.

Q. Zhang, W. Pei, and X. Liu, “Advances in Electrochemical Energy Storage Systems,” Electrochem, vol. 3, no. 2, pp. 225–228, 2022, doi: 10.3390/electrochem3020014.

M. Moncecchi, C. Brivio, S. Mandelli, and M. Merlo, “Battery energy storage systems in microgrids: Modeling and design criteria,” Energies (Basel), vol. 13, no. 8, pp. 1–18, 2020, doi: 10.3390/en13082006.

I. S. Freitas Gomes, Y. Perez, and E. Suomalainen, “Coupling small batteries and PV generation: A review,” Renewable and Sustainable Energy Reviews, vol. 126, no. March, p. 109835, 2020, doi: 10.1016/j.rser.2020.109835.

J. Carroquino, C. Escriche-Martínez, L. Valiño, and R. Dufo-López, “Comparison of economic performance of lead-acid and li-ion batteries in standalone photovoltaic energy systems,” Applied Sciences (Switzerland), vol. 11, no. 8, 2021, doi: 10.3390/app11083587.

J. M. Lujano-Rojas, R. Dufo-López, J. L. Atencio-Guerra, E. M. G. Rodrigues, J. L. Bernal-Agustín, and J. P. S. Catalão, “Operating conditions of lead-acid batteries in the optimization of hybrid energy systems and microgrids,” Appl Energy, vol. 179, pp. 590–600, Oct. 2016, doi: 10.1016/J.APENERGY.2016.07.018.

K. Santos-Pereira, J. D. F. Pereira, L. S. Veras, D. L. S. Cosme, D. Q. Oliveira, and O. R. Saavedra, “The requirements and constraints of storage technology in isolated microgrids: a comparative analysis of lithium-ion vs. lead-acid batteries,” Energy Systems, 2021, doi: 10.1007/S12667-021-00439-7.

P. B. L. Neto, O. R. Saavedra, and L. A. De Souza Ribeiro, “A Dual-Battery Storage Bank Configuration for Isolated Microgrids Based on Renewable Sources,” IEEE Trans Sustain Energy, vol. 9, no. 4, pp. 1618–1626, 2018, doi: 10.1109/TSTE.2018.2800689.

C. Zhang, Y. L. Wei, P. F. Cao, and M. C. Lin, “Energy storage system: Current studies on batteries and power condition system,” Renewable and Sustainable Energy Reviews, vol. 82, no. October 2017, pp. 3091–3106, 2018, doi: 10.1016/j.rser.2017.10.030.

C. A. Velásquez, F. A. Vásquez, M. Álvarez-Láinez, A. F. Zapata-González, and J. A. Calderón, “Development of a flexible anode for lithium-ion batteries from electrospun carbon-magnetite composite microfibers,” Revista Facultad de Ingenieria, no. 106, pp. 93–101, 2023, doi: 10.17533/udea.redin.20210319.

D. Li, S. Guo, W. He, M. King, and J. Wang, “Combined capacity and operation optimisation of lithium-ion battery energy storage working with a combined heat and power system,” Renewable and Sustainable Energy Reviews, vol. 140, no. November 2020, p. 110731, 2021, doi: 10.1016/j.rser.2021.110731.

M. Gutsch and J. Leker, “Global warming potential of lithium-ion battery energy storage systems: A review,” J Energy Storage, vol. 52, no. PC, p. 105030, 2022, doi: 10.1016/j.est.2022.105030.

Y. Wang et al., “Environmental impact assessment of second life and recycling for LiFePO4 power batteries in China,” J Environ Manage, vol. 314, p. 115083, Jul. 2022, doi: 10.1016/J.JENVMAN.2022.115083.

P. Ayuso, H. Beltran, J. Segarra-Tamarit, and E. Pérez, “Optimized profitability of LFP and NMC Li-ion batteries in residential PV applications,” Math Comput Simul, vol. 183, pp. 97–115, May 2021, doi: 10.1016/J.MATCOM.2020.02.011.

Downloads

Published

2024-09-06

How to Cite

Izquierdo-Monge, Óscar, Martínez-Gurría, M., Peña-Carro, P., Zorita-Lamadrid, A., Hernández-Jiménez, Ángel, & Alvira-Ballano, L. (2024). Different electrochemical energy storage systems in a smart microgrid. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20240940

Issue

Section

Research paper

Most read articles by the same author(s)