Geothermal energy as a solution to heating demand: Economic analysis vs. conventional supply

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250259

Keywords:

Energy supply, Renewable resources, Comparative analysis, Energy economics

Abstract

Renewable energies lead the energy transition towards a more sustainable and environmentally friendly energy system. Decarbonization and environmental policies, such as Europe’s 2030 Climate Target Plan, favor and encourage this change. Geothermal energy as a renewable energy can play a critical role in the decarbonization within the heating sector. It is an efficient, safe, and clean energy that is not being implemented with the same trend as its counterparts. This study addresses two issues in the implementation of geothermal energy: the calculation of thermal needs and the economic difference in implementation compared to conventional supplies. Therefore, this study presents a simple methodology for sizing calculations for housing developments and economic comparison of the same installation powered by natural gas or low-enthalpy geothermal energy. The comparative terms considered are the initial installation and the annual expense. This comparison seeks to calculate the payback period of the initial geothermal installation, which has been carried out considering various economic scenarios.

|Abstract
= 128 veces | PDF
= 24 veces|

Downloads

Download data is not yet available.

Author Biographies

Natalia Nuño-Villanueva, Universidad de Salamanca

Mining and energy engineer (MsC) Department of Cartographic and Land Engineering

Ignacio Martín-Nieto, Universidad de Salamanca

Mining and energy engineer (PhD), Department of Cartographic and Land Engineering

Cristina Sáez-Blázquez, Universidad de Salamanca

Mining and energy engineer (PhD), Department of Cartographic and Land Engineering

Arturo Farfán-Martín, Universidad de Salamanca

Mining and energy engineer (PhD), Department and Rank: Department of Cartographic and Land Engineering

References

T. Kitzberger, D. Kilian, J. Kotik, and T. Pröll, “Comprehensive analysis of the performance and intrinsic energy losses of centralized domestic hot water (dhw) systems in commercial (educational) buildings,” Energy and Buildings, vol. 195, Jul. 2019. [Online]. Available: https://doi.org/10.1016/j.enbuild.2019.05.016

K. Duus and G. Schmitz, “Experimental investigation of sustainable and energy efficient anagement of a geothermal field as a heat source and heat sink for a large office building,” Energy and Buildings, vol. 235, Mar. 2021. [Online]. Available: https://doi.org/10.1016/j.enbuild.2021.110726

A. Molar-Cruz, M. F. Keim, C. Schifflechner, M. Loewer, K. Zosseder, M. Drews, and et al., “Techno-economic optimization of large-scale deep geothermal district heating systems with long-distance heat transport,” Energy Conversion and Management, vol. 267, Sep.2022. [Online]. Available: https://doi.org/10.1016/j.enconman.2022.115906

M. H. Kristensen and S. Petersen, “District heating energy efficiency of danish building typologies,” Energy and Buildings, vol. 231, Jan. 2021. [Online]. Available: https://doi.org/10.1016/j.enbuild.2020.110602

L. Ozgener, A. Hepbasli, and I. Dincer, “06/02326 effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example: Ozgener, l. et al. building and environment, 2006, 41, (6), 699–709.” Fuel and Energy Abstracts, vol. 47, no. 5.

U. Persson and S. Werner, “Heat distribution and the future competitiveness of district heating,” Applied Energy, vol. 88, no. 3.

B. Rezaie and M. A. Rosen, “District heating and cooling: Review of technology and potential enhancements,” Applied Energy, vol. 93, May. 2012. [Online]. Available: https://doi.org/10.1016/j.apenergy.2011.04.020

M. Gong and S. Werner, “Exergy analysis of network temperature levels in swedish and danish district heating systems,” Renewable Energy, vol. 84, Dec. 2015. [Online]. Available: https://doi.org/10.1016/j.renene.2015.06.001

S. Paiho and F. Reda, “Towards next generation district heating in finland,” Renewable and Sustainable Energy Reviews, vol. 65, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.rser.2016.07.049

H. Averfalk and S. Werner, “Economic benefits of fourth generation district heating,” Energy, vol. 193, Feb. 2020. [Online]. Available: https://doi.org/10.1016/j.energy.2019.116727

B. van der Heijde, A. Vandermeulen, R. Salenbien, and L. Helsen, “Integrated optimal design and control of fourth generation district heating networks with thermal energy storage,” Energies, vol. 12, no. 14.

H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J. E. Thorsen, F. Hvelplund, and B. V. Mathiesen, “4th generation district heating (4gdh): Integrating smart thermal grids into future sustainable energy systems,” Energy, vol. 68, Apr. 2014. [Online]. Available: https://doi.org/10.1016/j.energy.2014.02.089

H. Lund, P. A. Østergaard, T. Bach-Nielsen, S. Werner, J. E. Thorsen, O. Gudmundsson, and et al., “Perspectives on fourth and fifth generation district heating,” Energy, vol. 227, Jul. 2021. [Online].Available: https://doi.org/10.1016/j.energy.2021.120520

S. Buffa, M. Cozzini, M. D’Antoni, M. Baratieri, and R. Fedrizzi, “5th generation district heating and cooling systems: A review of existing cases in europe,” Renewable and Sustainable Energy Reviews, vol. 104, Apr. 2019. [Online]. Available: https://doi.org/10.1016/j.rser.2018.12.059

S. S. Meibodi and F. Loveridge, “The future role of energy geostructures in fifth generation district heating and cooling networks,” Energy, vol. 240, Feb. 2022. [Online]. Available: https://doi.org/10.1016/j.energy.2021.122481

A. Volkova, I. Pakere, L. Murauskaite, P. Huang, K. Lepiksaar, and X. Zhang, “5th generation district heating and cooling (5gdhc) implementation potential in urban areas with existing district heating systems,” Energy Reports, vol. 8, Nov. 2022. [Online]. Available: https://doi.org/10.1016/j.egyr.2022.07.162

J. W. Lund and P. J. Lienau, “Geothermal district heating,” Jan. 2001. [Online]. Available: chrome-extension: //efaidnbmnnnibpcajpcglclefindmkaj/https://pangea.stanford.edu/ERE/pdf/IGAstandard/ISS/2009Slovakia/II.1.LUND.pdf

M. Sulzer and D. Hangartner, “Grundlagen-/thesen kalte fernwärme (anergienetze),” May. 2014.

J. W. Lund and A. N. Toth, “Direct utilization of geothermal energy 2020 worldwide review,” Geothermics, vol. 90, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.geothermics.2020.101915

C. Sáez-Blázquez, A. Farfán-Martín, I. M. Nieto, and D. González-Aguilera, “Economic and environmental analysis of different district heating systems aided by geothermal energy,” Energies, vol. 11, no. 5.

A. S. Pratiwi and E. Trutnevyte, “Decision paths to reduce costs and increase economic impact of geothermal district heating in geneva, switzerland,” Applied Energy, vol. 322, Sep. 2022. [Online]. Available: https://doi.org/10.1016/j.apenergy.2022.119431

F. Sun, B. Hao, L. Fu, H. Wu, Y. Xie, and H. Wu, “New medium-low temperature hydrothermal geothermal district heating system based on distributed electric compression heat pumps and a centralized absorption heat transformer,” Energy, vol. 232, Oct. 2021. [Online]. Available: https://doi.org/10.1016/j.energy.2021.120974

Visor sigpac v 4.8. Sistema de Información Geográfica de Parcelas Agrícolas. Accessed Sep. 19, 2022. [Online]. Available: https: //sigpac.mapama.gob.es/fega/visor/

C. Sáez-Blázquez, A. Farfán-Martín, I. Martín-Nieto, P. Carrasco-García, L. S. Sánchez-Pérez, and D. González-Aguilera, “Thermal conductivity map of the avila region (spain) based on thermal conductivity measurements of different rock and soil samples,” Geothermics, vol. 65, Jan. 2017. [Online]. Available: https://doi.org/10.1016/j.geothermics.2016.09.001

Documento Básico HE Ahorro de Energía, Ministerio de Vivienda de Agenda Urbana, España, 2022. [Online]. Available: https://www.codigotecnico.org/pdf/Documentos/HE/DccHE.pdf

“¿cuánto cuesta instalar el gas natural?” 2022, accessed Oct. 03, 2022. [Online]. Available: https://preciogas.com/instalaciones/gas-natural/precio

“Eed – earth energy designer,” 2022, accessed Oct. 03, 2022.[Online]. Available: https://buildingphysics.com/eed-2/

“Bombas de calor geotérmica vaillant geotherm alta potencia vws 460/3 400 v,” Oct. 2022. [Online]. Available: https://www.gasfriocalor.com/bombas-de-calor-geotermica-vaillant-geotherm-alta-potenciaprotectpenaltyz@-vws-460-3-400-v

Downloads

Published

2025-02-28

How to Cite

Nuño-Villanueva, N., Martín-Nieto, I., Sáez-Blázquez, C., & Farfán-Martín, A. (2025). Geothermal energy as a solution to heating demand: Economic analysis vs. conventional supply. Revista Facultad De Ingeniería Universidad De Antioquia, (118), e50259. https://doi.org/10.17533/udea.redin.20250259