Geothermal energy as a solution to heating demand: Economic analysis vs. conventional supply

Authors

DOI:

https://doi.org/10.17533/udea.redin.20250259

Keywords:

Energy supply, Renewable resources, Comparative analysis, Energy economics

Abstract

Renewable energies lead the energy transition towards a more sustainable and environmentally friendly energy system. Decarbonization and environmental policies, such as Europe’s 2030 Climate Target Plan, favor and encourage this change. Geothermal energy as a renewable energy can play a critical role in the decarbonization within the heating sector. It is an efficient, safe, and clean energy that is not being implemented with the same trend as its counterparts. This study addresses two issues in the implementation of geothermal energy: the calculation of thermal needs and the economic difference in implementation compared to conventional supplies. Therefore, this study presents a simple methodology for sizing calculations for housing developments and economic comparison of the same installation powered by natural gas or low-enthalpy geothermal energy. The comparative terms considered are the initial installation and the annual expense. This comparison seeks to calculate the payback period of the initial geothermal installation, which has been carried out considering various economic scenarios.

|Abstract
= 3 veces | PDF
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Natalia Nuño-Villanueva, Universidad de Salamanca

Mining and energy engineer (MsC) Department of Cartographic and Land Engineering

Ignacio Martín-Nieto, Universidad de Salamanca

Mining and energy engineer (PhD), Department of Cartographic and Land Engineering

Cristina Sáez-Blázquez, Universidad de Salamanca

Mining and energy engineer (PhD), Department of Cartographic and Land Engineering

Arturo Farfán-Martín, Universidad de Salamanca

Mining and energy engineer (PhD), Department and Rank: Department of Cartographic and Land Engineering

References

T. Kitzberger, D. Kilian, J. Kotik, y T. Pröll, «Comprehensive analysis of the performance and intrinsic energy losses of centralized Domestic Hot Water (DHW) systems in commercial (educational) buildings», Energy and Buildings, vol. 195, pp. 126-138, jul. 2019, doi: 10.1016/j.enbuild.2019.05.016.

K. Duus and G. Schmitz, «Experimental investigation of sustainable and energy efficient management of a geothermal field as a heat source and heat sink for a large office building», Energy and Buildings, vol. 235, p. 110726, mar. 2021, doi: 10.1016/j.enbuild.2021.110726.

M. H. Kristensen and S. Petersen, «District heating energy efficiency of Danish building typologies», Energy and Buildings, vol. 231, p. 110602, ene. 2021, doi: 10.1016/j.enbuild.2020.110602.

«06/02326 Effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example: Ozgener, L. et al. Building and Environment, 2006, 41, (6), 699–709.», Fuel and Energy Abstracts, vol. 47, n.o 5, p. 354, sep. 2006, doi: 10.1016/S0140-6701(06)82334-9.

U. Persson and S. Werner, «Heat distribution and the future competitiveness of district heating», Applied Energy, vol. 88, n.o 3, pp. 568-576, mar. 2011, doi: 10.1016/j.apenergy.2010.09.020.

B. Rezaie and M. A. Rosen, «District heating and cooling: Review of technology and potential enhancements», Applied Energy, vol. 93, pp. 2-10, may 2012, doi: 10.1016/j.apenergy.2011.04.020.

M. Gong and S. Werner, «Exergy analysis of network temperature levels in Swedish and Danish district heating systems», Renewable Energy, vol. 84, pp. 106-113, dic. 2015, doi: 10.1016/j.renene.2015.06.001.

S. Paiho and F. Reda, «Towards next generation district heating in Finland», Renewable and Sustainable Energy Reviews, vol. 65, pp. 915-924, nov. 2016, doi: 10.1016/j.rser.2016.07.049.

H. Averfalk and S. Werner, «Economic benefits of fourth generation district heating», Energy, vol. 193, p. 116727, feb. 2020, doi: 10.1016/j.energy.2019.116727.

B. van der Heijde, A. Vandermeulen, R. Salenbien, and L. Helsen, «Integrated Optimal Design and Control of Fourth Generation District Heating Networks with Thermal Energy Storage», Energies, vol. 12, n.o 14, Art. n.o 14, ene. 2019, doi: 10.3390/en12142766.

H. Lund et al., «4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems», Energy, vol. 68, pp. 1-11, abr. 2014, doi: 10.1016/j.energy.2014.02.089.

H. Lund et al., «Perspectives on fourth and fifth generation district heating», Energy, vol. 227, p. 120520, jul. 2021, doi: 10.1016/j.energy.2021.120520.

S. Buffa, M. Cozzini, M. D’Antoni, M. Baratieri, and R. Fedrizzi, «5th generation district heating and cooling systems: A review of existing cases in Europe», Renewable and Sustainable Energy Reviews, vol. 104, pp. 504-522, abr. 2019, doi: 10.1016/j.rser.2018.12.059.

S. S. Meibodi and F. Loveridge, «The future role of energy geostructures in fifth generation district heating and cooling networks», Energy, vol. 240, p. 122481, feb. 2022, doi: 10.1016/j.energy.2021.122481.

A. Volkova, I. Pakere, L. Murauskaite, P. Huang, K. Lepiksaar, and X. Zhang, «5th generation district heating and cooling (5GDHC) implementation potential in urban areas with existing district heating systems», Energy Reports, vol. 8, pp. 10037-10047, nov. 2022, doi: 10.1016/j.egyr.2022.07.162.

J. W. Lund and P. J. Lienau, «GEOTHERMAL DISTRICT HEATING», p. 18.

«Visor SigPac V 4.8». https://sigpac.mapama.gob.es/fega/visor/ (accedido 29 de septiembre de 2022).

C. Sáez Blázquez, A. Farfán Martín, I. Martín Nieto, P. Carrasco García, L. S. Sánchez Pérez, and D. González Aguilera, «Thermal conductivity map of the Avila region (Spain) based on thermal conductivity measurements of different rock and soil samples», Geothermics, vol. 65, pp. 60-71, ene. 2017, doi: 10.1016/j.geothermics.2016.09.001.

«DccHE.pdf». access: 3 october 2022. [Online]. Available: https://www.codigotecnico.org/pdf/Documentos/HE/DccHE.pdf

«¿Cuánto cuesta instalar el gas natural?», preciogas.com. https://preciogas.com/instalaciones/gas-natural/precio (accedido 3 de octubre de 2022).

«EED – Earth Energy Designer – Buildingphysics.com». https://buildingphysics.com/eed-2/ (access 3 actober 2022).

«Bombas de calor geotérmica Vaillant geoTHERM alta potencia VWS 460/3 400 V», Gasfriocalor.com. https://www.gasfriocalor.com/bombas-de-calor-geotermica-vaillant-geotherm-alta-potencia-vws-460-3-400-v (access 4 october 2022).

Downloads

Published

2025-02-28

How to Cite

Nuño-Villanueva, N., Martín-Nieto, I., Sáez-Blázquez, C., & Farfán-Martín, A. (2025). Geothermal energy as a solution to heating demand: Economic analysis vs. conventional supply. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20250259

Issue

Section

Research paper