Geothermal energy as a solution to heating demand: Economic analysis vs. conventional supply
DOI:
https://doi.org/10.17533/udea.redin.20250259Keywords:
Energy supply, Renewable resources, Comparative analysis, Energy economicsAbstract
Renewable energies lead the energy transition towards a more sustainable and environmentally friendly energy system. Decarbonization and environmental policies, such as Europe’s 2030 Climate Target Plan, favor and encourage this change. Geothermal energy as a renewable energy can play a critical role in the decarbonization within the heating sector. It is an efficient, safe, and clean energy that is not being implemented with the same trend as its counterparts. This study addresses two issues in the implementation of geothermal energy: the calculation of thermal needs and the economic difference in implementation compared to conventional supplies. Therefore, this study presents a simple methodology for sizing calculations for housing developments and economic comparison of the same installation powered by natural gas or low-enthalpy geothermal energy. The comparative terms considered are the initial installation and the annual expense. This comparison seeks to calculate the payback period of the initial geothermal installation, which has been carried out considering various economic scenarios.
Downloads
References
T. Kitzberger, D. Kilian, J. Kotik, y T. Pröll, «Comprehensive analysis of the performance and intrinsic energy losses of centralized Domestic Hot Water (DHW) systems in commercial (educational) buildings», Energy and Buildings, vol. 195, pp. 126-138, jul. 2019, doi: 10.1016/j.enbuild.2019.05.016.
K. Duus and G. Schmitz, «Experimental investigation of sustainable and energy efficient management of a geothermal field as a heat source and heat sink for a large office building», Energy and Buildings, vol. 235, p. 110726, mar. 2021, doi: 10.1016/j.enbuild.2021.110726.
M. H. Kristensen and S. Petersen, «District heating energy efficiency of Danish building typologies», Energy and Buildings, vol. 231, p. 110602, ene. 2021, doi: 10.1016/j.enbuild.2020.110602.
«06/02326 Effect of reference state on the performance of energy and exergy evaluation of geothermal district heating systems: Balcova example: Ozgener, L. et al. Building and Environment, 2006, 41, (6), 699–709.», Fuel and Energy Abstracts, vol. 47, n.o 5, p. 354, sep. 2006, doi: 10.1016/S0140-6701(06)82334-9.
U. Persson and S. Werner, «Heat distribution and the future competitiveness of district heating», Applied Energy, vol. 88, n.o 3, pp. 568-576, mar. 2011, doi: 10.1016/j.apenergy.2010.09.020.
B. Rezaie and M. A. Rosen, «District heating and cooling: Review of technology and potential enhancements», Applied Energy, vol. 93, pp. 2-10, may 2012, doi: 10.1016/j.apenergy.2011.04.020.
M. Gong and S. Werner, «Exergy analysis of network temperature levels in Swedish and Danish district heating systems», Renewable Energy, vol. 84, pp. 106-113, dic. 2015, doi: 10.1016/j.renene.2015.06.001.
S. Paiho and F. Reda, «Towards next generation district heating in Finland», Renewable and Sustainable Energy Reviews, vol. 65, pp. 915-924, nov. 2016, doi: 10.1016/j.rser.2016.07.049.
H. Averfalk and S. Werner, «Economic benefits of fourth generation district heating», Energy, vol. 193, p. 116727, feb. 2020, doi: 10.1016/j.energy.2019.116727.
B. van der Heijde, A. Vandermeulen, R. Salenbien, and L. Helsen, «Integrated Optimal Design and Control of Fourth Generation District Heating Networks with Thermal Energy Storage», Energies, vol. 12, n.o 14, Art. n.o 14, ene. 2019, doi: 10.3390/en12142766.
H. Lund et al., «4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems», Energy, vol. 68, pp. 1-11, abr. 2014, doi: 10.1016/j.energy.2014.02.089.
H. Lund et al., «Perspectives on fourth and fifth generation district heating», Energy, vol. 227, p. 120520, jul. 2021, doi: 10.1016/j.energy.2021.120520.
S. Buffa, M. Cozzini, M. D’Antoni, M. Baratieri, and R. Fedrizzi, «5th generation district heating and cooling systems: A review of existing cases in Europe», Renewable and Sustainable Energy Reviews, vol. 104, pp. 504-522, abr. 2019, doi: 10.1016/j.rser.2018.12.059.
S. S. Meibodi and F. Loveridge, «The future role of energy geostructures in fifth generation district heating and cooling networks», Energy, vol. 240, p. 122481, feb. 2022, doi: 10.1016/j.energy.2021.122481.
A. Volkova, I. Pakere, L. Murauskaite, P. Huang, K. Lepiksaar, and X. Zhang, «5th generation district heating and cooling (5GDHC) implementation potential in urban areas with existing district heating systems», Energy Reports, vol. 8, pp. 10037-10047, nov. 2022, doi: 10.1016/j.egyr.2022.07.162.
J. W. Lund and P. J. Lienau, «GEOTHERMAL DISTRICT HEATING», p. 18.
«Visor SigPac V 4.8». https://sigpac.mapama.gob.es/fega/visor/ (accedido 29 de septiembre de 2022).
C. Sáez Blázquez, A. Farfán Martín, I. Martín Nieto, P. Carrasco García, L. S. Sánchez Pérez, and D. González Aguilera, «Thermal conductivity map of the Avila region (Spain) based on thermal conductivity measurements of different rock and soil samples», Geothermics, vol. 65, pp. 60-71, ene. 2017, doi: 10.1016/j.geothermics.2016.09.001.
«DccHE.pdf». access: 3 october 2022. [Online]. Available: https://www.codigotecnico.org/pdf/Documentos/HE/DccHE.pdf
«¿Cuánto cuesta instalar el gas natural?», preciogas.com. https://preciogas.com/instalaciones/gas-natural/precio (accedido 3 de octubre de 2022).
«EED – Earth Energy Designer – Buildingphysics.com». https://buildingphysics.com/eed-2/ (access 3 actober 2022).
«Bombas de calor geotérmica Vaillant geoTHERM alta potencia VWS 460/3 400 V», Gasfriocalor.com. https://www.gasfriocalor.com/bombas-de-calor-geotermica-vaillant-geotherm-alta-potencia-vws-460-3-400-v (access 4 october 2022).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Facultad de Ingeniería Universidad de Antioquia

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.