Levelized cost analysis in fixed-bottom offshore wind farms in the Colombian Caribbean

Authors

DOI:

https://doi.org/10.17533/udea.redin.20251190

Keywords:

Offshore wind power, fixed bottom, renewable energy sources, levelized cost of energy, Colombian coast

Abstract

The primary objective of this article is to estimate the levelized costs of fixed-bottom offshore wind energy in the Colombian Caribbean, particularly in the vicinity of La Guajira. Based on a review of existing literature, various mathematical models are evaluated to calculate the production costs of offshore wind projects, using a base case reported by the National Renewable Energy Laboratory in the United States. The goal is to identify the model that most accurately reflects the costs estimated by other global entities. The production costs are calculated for areas designated by Colombia's Ministry of Mines and Energy as suitable for offshore wind energy generation. These areas, located in the Alta Guajira region, feature water depths of less than 50 meters. The levelized energy costs are found to range between 88 and 131 USD/MWh for capacity factors exceeding 54%. These capacity factors are higher than those typically recorded worldwide, which range from 33% to 50%. Additionally, part of the range of levelized energy costs obtained falls within the global range, which is from 49 to 155 USD/MWh.

|Abstract
= 31 veces | PDF
= 7 veces|

Downloads

Download data is not yet available.

Author Biographies

Jorge Mario Illidge-Araujo, Universidad Industrial de Santander

Master's student, Mechanical Engineering School, Environmental and Energy Investigation Group

Jorge Luis Chacón-Velasco, Universidad Industrial de Santander

PhD. Universidad Politécnica de Valencia, Department of Applied Linguistics. Professor Mechanical Engineering School, Environmental and Energy Investigation Group

Manuel de Jesús Martínez, Universidad Industrial de Santander

Professor. Mechanical Engineering School, Environmental and Energy Investigation Group

Carlos Jaime Barrios-Hernández, Universidad Industrial de Santander

Director of the High Performance and Scientific Computing Center (SC3UIS) at Universidad Industrial de Santander (UIS) in Bucaramanga, Colombia. He is a full professor at the same university's School of Informatics and Systems Engineering (EISI) and a senior member of the ACM and IEEE Computer Society. Simultaneously, Dr. Barrios Hernández serves as the chair of the SCALAC (Advanced Computing Systems for Latin America and the Caribbean) consortium and co-chairs several academic conferences, workshops, and summer school

References

S. Uddin, “Causes, Effects, and Solutions to Global Warming,” Feb. 2022, doi: 10.20935/AL4829.

M. Á. Navas-Martín, M.-A. Ovalle-Perandones, J. A. López-Bueno, J. Díaz, C. Linares, and G. Sánchez-Martínez, “Population adaptation to heat as seen through the temperature-mortality relationship, in the context of the impact of global warming on health: A scoping review,” Sci. Total Environ., vol. 908, p. 168441, Jan. 2024, doi: 10.1016/j.scitotenv.2023.168441.

IRENA, “Renewable Energy Statistics 2022,” International Renewable Energy Agency, Abu Dhabi, 2022. [Online]. Available: https://www.irena.org/Publications/2022/Jul/Renewable-Energy-Statistics-2022

Ministerio de Minas y Energía, Renewables Consulting Group, and World Bank Group, “Hoja de ruta para el despliegue de la energía eólica costa afuera en Colombia,” Ministerio de minas y energía, Colombia, Reporte Final, 2022. [Online]. Available: https://www.minenergia.gov.co/es/micrositios/enlace-ruta-eolica-offshore/

R. Hall, E. João, and C. W. Knapp, “Environmental impacts of decommissioning: Onshore versus offshore wind farms,” Environ. Impact Assess. Rev., vol. 83, p. 106404, Jul. 2020, doi: 10.1016/j.eiar.2020.106404.

A. G. Gonzalez-Rodriguez, J. Serrano-Gonzalez, M. Burgos-Payan, and J. Riquelme-Santos, “Multi-objective optimization of a uniformly distributed offshore wind farm considering both economic factors and visual impact,” Sustain. Energy Technol. Assess., vol. 52, p. 102148, Aug. 2022, doi: 10.1016/j.seta.2022.102148.

IRENA, “Renewable power generation costs in 2022,” International Renewable Energy Agency, Abu Dhabi, 2023. [Online]. Available: https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022

T. Stehly, P. Duffy, and D. M. Hernando, “2022 Cost of Wind Energy Review,” 2022, [Online]. Available: https://www.nrel.gov/docs/fy24osti/88335.pdf

Y. Liang, Y. Ma, H. Wang, A. Mesbahi, B. Jeong, and P. Zhou, “Levelised cost of energy analysis for offshore wind farms – A case study of the New York State development,” Ocean Eng., vol. 239, p. 109923, Nov. 2021, doi: 10.1016/j.oceaneng.2021.109923.

J. Sim, “An economic evaluation of potential offshore wind farm sites in South Korea using a real options approach,” Energy Rep., vol. 10, pp. 29–37, Nov. 2023, doi: 10.1016/j.egyr.2023.06.007.

S. Alsubal, W. S. Alaloul, E. L. Shawn, M. S. Liew, P. Palaniappan, and M. A. Musarat, “Life Cycle Cost Assessment of Offshore Wind Farm: Kudat Malaysia Case,” Sustainability, vol. 13, no. 14, Art. no. 14, Jan. 2021, doi: 10.3390/su13147943.

U. Cali, N. Erdogan, S. Kucuksari, and M. Argin, “Techno-economic analysis of high potential offshore wind farm locations in Turkey,” Energy Strategy Rev., vol. 22, pp. 325–336, Nov. 2018, doi: 10.1016/j.esr.2018.10.007.

A. Díaz-Motta, F. Díaz-González, and M. Villa-Arrieta, “Energy sustainability assessment of offshore wind-powered ammonia,” J. Clean. Prod., vol. 420, p. 138419, Sep. 2023, doi: 10.1016/j.jclepro.2023.138419.

R. Chitteth Ramachandran, C. Desmond, F. Judge, J.-J. Serraris, and J. Murphy, “Floating wind turbines: marine operations challenges and opportunities,” Wind Energy Sci., vol. 7, no. 2, pp. 903–924, Apr. 2022, doi: 10.5194/wes-7-903-2022.

A. Martinez and G. Iglesias, “Mapping of the levelised cost of energy for floating offshore wind in the European Atlantic,” Renew. Sustain. Energy Rev., vol. 154, p. 111889, Feb. 2022, doi: 10.1016/j.rser.2021.111889.

M. Kreider, F. Oteri, A. Robertson, C. Constant, and E. Gill, “Offshore Wind Energy: Technology Below the Water,” 2022, [Online]. Available: https://www.nrel.gov/docs/fy22osti/83142.pdf

S. Santhakumar, G. Smart, M. Noonan, H. Meerman, and A. Faaij, “Technological progress observed for fixed-bottom offshore wind in the EU and UK,” Technol. Forecast. Soc. Change, vol. 182, p. 121856, Sep. 2022, doi: 10.1016/j.techfore.2022.121856.

Z. Jiang, “Installation of offshore wind turbines: A technical review,” Renew. Sustain. Energy Rev., vol. 139, p. 110576, Apr. 2021, doi: 10.1016/j.rser.2020.110576.

M. Bilgili and H. Alphan, “Global growth in offshore wind turbine technology,” Clean Technol. Environ. Policy, vol. 24, no. 7, pp. 2215–2227, Sep. 2022, doi: 10.1007/s10098-022-02314-0.

A. Arce Canga-Argüelles, “Análisis del estado del arte de aerogeneradores offshore. Estado de la tecnología, ventajas competitivas, limitaciones y principales fabricantes,” 2021, Accessed: Nov. 25, 2023. [Online]. Available: https://idus.us.es/handle/11441/128922

M. Bilgili, H. Alphan, and A. Ilhan, “Potential visibility, growth, and technological innovation in offshore wind turbines installed in Europe,” Environ. Sci. Pollut. Res., vol. 30, no. 10, pp. 27208–27226, Feb. 2023, doi: 10.1007/s11356-022-24142-x.

VESTAS, “Vestas.” Accessed: Jan. 01, 2024. [Online]. Available: https://nozebra.ipapercms.dk/Vestas/Communication/Productbrochure/OffshoreProductBrochure/v236-150-mw-brochure/

H. Sun, X. Gao, and H. Yang, “A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect,” Renew. Sustain. Energy Rev., vol. 132, p. 110042, Oct. 2020, doi: 10.1016/j.rser.2020.110042.

M. M. Lozer dos Reis, B. Mitsuo Mazetto, and E. Costa Malateaux da Silva, “Economic analysis for implantation of an offshore wind farm in the Brazilian coast,” Sustain. Energy Technol. Assess., vol. 43, p. 100955, Feb. 2021, doi: 10.1016/j.seta.2020.100955.

J. C. Y. Lee and M. J. Fields, “An overview of wind-energy-production prediction bias, losses, and uncertainties,” Wind Energy Sci., vol. 6, no. 2, pp. 311–365, Mar. 2021, doi: 10.5194/wes-6-311-2021.

C.-D. Yue, C.-C. Liu, C.-C. Tu, and T.-H. Lin, “Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources,” Energies, vol. 12, no. 4, Art. no. 4, Jan. 2019, doi: 10.3390/en12040700.

O. S. Ohunakin et al., “Techno-economic assessment of offshore wind energy potential at selected sites in the Gulf of Guinea,” Energy Convers. Manag., vol. 288, p. 117110, Jul. 2023, doi: 10.1016/j.enconman.2023.117110.

M. Shafiee, F. Brennan, and I. A. Espinosa, “A parametric whole life cost model for offshore wind farms,” Int. J. Life Cycle Assess., vol. 21, no. 7, pp. 961–975, Jul. 2016, doi: 10.1007/s11367-016-1075-z.

M. Dicorato, G. Forte, M. Pisani, and M. Trovato, “Guidelines for assessment of investment cost for offshore wind generation,” Renew. Energy, vol. 36, no. 8, pp. 2043–2051, Aug. 2011, doi: 10.1016/j.renene.2011.01.003.

A. Yildirim, “The technical and economical feasibility study of offshore wind farms in Turkey,” Clean Technol. Environ. Policy, vol. 25, no. 1, pp. 125–142, Jan. 2023, doi: 10.1007/s10098-022-02392-0.

F. Tilca, J. F. M. Malvasio, and C. Placco, “Valores sugeridos de pérdidas e incertidumbres en el cálculo de probabilidades de excedencia de parques eólicos.,” Energ. Renov. Medio Ambiente, vol. 48, pp. 47–56, 2021.

DANE, “DANE - IPC información técnica.” Accessed: Jan. 27, 2024. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-al-consumidor-ipc/ipc-informacion-tecnica

IEA, “Projected Costs of Generating Electricity 2020 – Analysis,” IEA. Accessed: Jan. 02, 2024. [Online]. Available: https://www.iea.org/reports/projected-costs-of-generating-electricity-2020

Downloads

Published

2025-11-05

How to Cite

Illidge-Araujo, J. M., Chacón-Velasco, J. L., Martínez, M. de J., & Barrios-Hernández, C. J. (2025). Levelized cost analysis in fixed-bottom offshore wind farms in the Colombian Caribbean. Revista Facultad De Ingeniería Universidad De Antioquia. https://doi.org/10.17533/udea.redin.20251190

Issue

Section

Case report