Effects of the synthetic method on the particle size and purity of magnetite

Autores/as

  • Beatriz Jaramillo-Tabares Universidad de Antioquia
  • Alejandro Alberto Zuleta-Gil Universidad de Antioquia
  • Franklin Jaramillo-Isaza Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.14927

Palabras clave:

Magnetite synthesis, nanometric magnetite, magnetite characterization

Resumen

The characterization of magnetites synthesized by methods reported with some modifications is presented. The influence on purity and particle size of the obtained oxides is discussed. The samples were characterized by Mössbauer Spectroscopy at room temperature, particle size analysis by light scattering and by transmission electron microscopy of naked particles. The results showed that depending on the method of synthesis there are variations on stoichiometry and composition of magnetites, being this difference more important when the rate of addition of the alkaline solution to the combined ferrous and dispersant solution is changed. Moreover, it has been found strong agglomeration evidenced by TEM, however the sizes of the individual crystallites are in the nanometer scale.

|Resumen
= 529 veces | PDF
= 62 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Beatriz Jaramillo-Tabares, Universidad de Antioquia

Grupo de Corrosión y Protección (GCP), Universidad de Antioquia, calle 62
N.º 52-59, SIU, Torre 2, Laboratorio 330, Medellín, Colombia.

Alejandro Alberto Zuleta-Gil, Universidad de Antioquia

Grupo de Corrosión y Protección (GCP), Universidad de Antioquia, calle 62
N.º 52-59, SIU, Torre 2, Laboratorio 330, Medellín, Colombia.

Franklin Jaramillo-Isaza, Universidad de Antioquia

Grupo de Corrosión y Protección (GCP), Universidad de Antioquia, calle 62
N.º 52-59, SIU, Torre 2, Laboratorio 330, Medellín, Colombia.

Citas

R. Y. Hong, T. T. Pan, Y. P. Han, H. Z. Li, J. Ding, S. Hand. “Magnetic field synthesis of Fe3O4 nanoparticles used as a precursor of ferrofluids”. J. Magn. Mater. Vol. 310. 2007. pp. 37-47. DOI: https://doi.org/10.1016/j.jmmm.2006.07.026

M. A. Legodi, D. de Waal. “The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste”. Dyes and Pigments. Vol. 74. 2007. pp. 161-168. DOI: https://doi.org/10.1016/j.dyepig.2006.01.038

S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser. “Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices”. Science. Vol. 287. 2000. pp. 1989-1992. DOI: https://doi.org/10.1126/science.287.5460.1989

Q. A. Pankhurst, J. Connolly, S. K. Jones, J. Dobson. “Applications of magnetic nanoparticles in biomedicine”. J. Phys D: Appl. Phys. Vol. 36. 2003. pp. R167-181. DOI: https://doi.org/10.1088/0022-3727/36/13/201

N. Pernicone, F. Ferrero, I. Rossetti, L. Forni, P. Canton, P. Riello, G. Fagherazzi, M. Signoretto, F. Pinna. “Wustite as a new precursor of industrial ammonia synthesis catalysts”. Appl. Catal. A: Gen. Vol. 251. 2003. pp. 121-129. DOI: https://doi.org/10.1016/S0926-860X(03)00313-2

E. H. Kim, H. S. Lee, B. K. Kwak, B. K. Kim. “Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent”. J. Magn. Mater. Vol. 289. 2005. pp. 328-330. DOI: https://doi.org/10.1016/j.jmmm.2004.11.093

D. Maity, D. C. Agrawal. “Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media”. J. Magn. Mater. Vol. 308. 2007. pp. 46-55. DOI: https://doi.org/10.1016/j.jmmm.2006.05.001

H. Zhang, R. Wang, G. Zhang, B. Yang. “A covalently attached film based on poly(methacrylic acid)-capped Fe3O4 nanoparticles”. Thin Solid Films. Vol. 429. 2003. pp. 167-173. DOI: https://doi.org/10.1016/S0040-6090(03)00059-2

Y. Yang, L. Li, G. Chen. “Synthesis of magnetic particles via a cationic–anionic urfactante vesicle method”. J. Magn. Mater. Vol. 305. 2006. pp. 40-46. DOI: https://doi.org/10.1016/j.jmmm.2005.11.028

Z. Huang, F. Tang, L. Zhang. “Morphology control and texture of Fe3O4 nanoparticle-coated polystyrene microspheres by ethylene glycol in forced hydrolysis reaction”. Thin Solid Films. Vol. 471. 2005. pp. 105-112. DOI: https://doi.org/10.1016/j.tsf.2004.04.042

Z. L. Liu, X. Wang, K. L. Yao, G. H. Du, Q. H. Lu, Z. H. Ding, J. Tao, Q. Ning, X. P. Luo, D. Y. Tian, D. Xi. “Synthesis of magnetite nanoparticles in W/O microemulsion”. J. Mater. Sci. Vol. 39. 2004. pp. 2633-2636. DOI: https://doi.org/10.1023/B:JMSC.0000020046.68106.22

Y. Okano, T. Nakamura. Hydrothermal synthesis of aluminum bearing magnetite particles. Colloids and Surfaces. Vol. 139. 1998. pp. 279-285. DOI: https://doi.org/10.1016/S0927-7757(98)00367-7

U. Schwertmann, R. M. Cornell. Iron Oxides in the Laboratory. Preparation and Characterization. 2a ed. Ed. Wiley, Weinheim. 1991. pp. 75-111.

W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, Y. Liu. “The synthesis of octahedral nanoparticles of magnetite” Mat. Lett. Vol. 60. 2006. pp. 2998-3001. DOI: https://doi.org/10.1016/j.matlet.2006.02.032

Y.K. Gun’ko, S.C. Pillai, D. Mcinerney, “Magnetic nanoparticles and nanoparticle assemblies from metallorganic precursors”. J. Mater. Sci. Mater. Electron. Vol. 12. 2001. pp. 299-302. DOI: https://doi.org/10.1023/A:1011284009174

S. Franger, P. Berthet, J. Berthon. “Electrochemical synthesis of Fe 3O 4 nanoparticles in alkaline aqueous solutions containing complexing agents”. J. Solid State Electrochem. Vol. 8. 2004. pp. 218-223. DOI: https://doi.org/10.1007/s10008-003-0469-6

G. Gnanaprakash, S. Mahadevan, T. Jayakumar, P. Kalyanasundaram, J. Philip , B. Raj. “Effect of initial pH and temperature of iron salt Solutions on formation of magnetite nanoparticles”. Mat. Chem. and Phys. Vol. 103. 2007. pp.168-175. DOI: https://doi.org/10.1016/j.matchemphys.2007.02.011

C. A. Barrero, A. L. Morales, J. Mazo-Zuluaga, F. Jaramillo, G. Pérez, D. M. Escobar, C. Arroyave, J. Tobón, P. M. Montoya, L. Ososrio, R. E Vandenberghe, J. M. Greneche. “Synthesis and Mössbauer characterization of Cu and Cr doped magnetites”. Rev. Metal. Madrid. Vol. Extr. 2003. pp. 62-67. DOI: https://doi.org/10.3989/revmetalm.2003.v39.iExtra.1098

J. Deng, Ch. L. He, Y. Peng, J. Wang, X. Long, P. Li, A. S. C. Chang. “Magnetic and conductive Fe3O4– polyaniline nanoparticles with core–shell structure”. Synt. Met. Vol. 139. 2003. pp. 295-301. DOI: https://doi.org/10.1016/S0379-6779(03)00166-8

P. S. Shidu, R. J.Gilkes, A. M. Posner. “The synthesis and some properties of Co, Ni, Zn, Cu, Mn and Cd substituted magnetites”. J. inorg. nucl. chem. Vol. 40. 1978. pp. 429-435. DOI: https://doi.org/10.1016/0022-1902(78)80418-7

R. M. Cornell, U. Schwertmann. Iron oxide. Structure, Properties, Reactions, Ocurrence and Uses. 2a ed. Ed. Wiley, Weinheim. 2003. pp. 149. DOI: https://doi.org/10.1002/3527602097

D. K Kim, Y. Zhang, W. Voit, K. V.Rao, M. Muhammed. “Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles”. J. Magn. Mater. Vol. 225. 2001. pp. 30-36. DOI: https://doi.org/10.1016/S0304-8853(00)01224-5

R. W. Chantrell, A. Bradbury, J. Popplewell, W. Charles. “Agglomerate formation in a magnetic fluid”. J. of Appl. Phys. Vol. 53. 1982. pp. 2742-2744. DOI: https://doi.org/10.1063/1.330953

J. H. Wu, S. P. Ko, H. L.Liu, S. Kim, J. S. Ju, Y. K Kim. “Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties”. Mat. Lett. Vol. 61. 2007. pp. 3124-3129. DOI: https://doi.org/10.1016/j.matlet.2006.11.032

L. Li, Y. Chu, Y. Liu, D. Wang. “Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts”. Journal of Alloys and Compounds. Vol. 472. 2009. pp. 271-275. DOI: https://doi.org/10.1016/j.jallcom.2008.04.041

Descargas

Publicado

2013-03-20

Cómo citar

Jaramillo-Tabares, B., Zuleta-Gil, A. A., & Jaramillo-Isaza, F. (2013). Effects of the synthetic method on the particle size and purity of magnetite. Revista Facultad De Ingeniería Universidad De Antioquia, (50), 9–16. https://doi.org/10.17533/udea.redin.14927