Effect of shaping method on the densification of SnO2 ceramic pieces
DOI:
https://doi.org/10.17533/udea.redin.15745Keywords:
pressing, slip casting, sintering, densification, tin oxideAbstract
Tin oxide, SnO2, has a big technological importance. For its uses it is of great interest to optimize the sintering conditions to obtain an adequate densification, microstructure and mechanical properties, depending on the technological application. In this paper, ceramic powders of SnO2 obtained by controlled precipitation method were sintered. Powders were shaped to obtain “green” pieces using both pressing and by the casting method (“slip casting”) for this. For the slip casting method was realized a careful study of SnO2 suspensions to obtain a stable slurry. For determine the effect of shaping methods on the densification of pieces, were obtained important information analyzing the results of curves of weight loss, shrinkage and densification, as temperature functions, of the different samples. Finally, the sintered pieces were characterized using SEM to know their microstructure. The shaped pieces using colloidal method showed the higher density values (ρ = 4.2 ± 0.2 g/cm3). These samples showed a uniform microstructure with very small pores. These characteristics would allow their use as membranes or gas sensors.
Downloads
References
S. Kalpakjian, S. Schmid. Manufacturing processes for engineering materials. 5th ed. Ed. Pearson Education. New Jersey, USA. 2008. pp. 101-134.
L. Suk-Joong. Sintering: Densification, Grain Growth, and Microstructure. 1st ed. Ed. Elsevier ButterworthHeinemann. 2005. pp. 54-68.
R. Pugh, L. Bergstrom. Surface and colloid chemistry in advanced ceramics processing. Surfactant Science Series Vol. 51. 3rd ed. Ed. Marcel Dekkor, Inc. New York, U.S. 1994. pp. 127-279.
W. Tseg, C. Wu. “Aggregation, rheology and electrophoretic packing structure of aqueous Al2 O3 nanoparticle suspensions”. Act. Mater. Vol. 50. 2002. pp. 3757-3766. DOI: https://doi.org/10.1016/S1359-6454(02)00142-8
M. Madou, S. Morrison. Chemical sensing with solid state devices. 1st ed. Ed. Academic Press. New York, USA. 1989. pp. 277-546. DOI: https://doi.org/10.1016/B978-0-12-464965-1.50012-0
A. Montenegro, J. Rodríguez. “Uso de Métodos Químicos para la Obtención de Sensores de Gas del Sistema Sn-Sb”. Dyna. Vol. 74. 2007. pp. 97-105.
C. Ararat, A. Mosquera, R. Parra, M. Castro, J. Rodríguez P. “Synthesis of SnO2 nanoparticles through the controlled precipitation route”. J. Mat. Chem Phys. Vol. 101. 2007. pp. 433-440. DOI: https://doi.org/10.1016/j.matchemphys.2006.08.003
C. Aguilar, Y. Ochoa, J. Rodríguez. “Obtención de óxido de estaño en el sistema SnCl2 -H2 O: mecanismo de formación de las partículas”. Rev. LatinAm. Metal. Mat. Vol. 33. 2013. pp. 1-8.
M. Groover. Fundamentos de Manufactura Moderna: materiales, procesos y sistemas. 3rd ed. Ed. Mc Graw Hill. Naucalpan de Juárez, México. 2013. pp. 162-180.
R. Muñoz, J. Muñoz, P. Mancilla, J. Rodríguez. “Caracterización fisicoquímica de arcillas del municipio de Guapi-Costa Pacífica Caucana (Colombia)”. Rev. Acad. Colomb. Cienc. Vol. 31. 2007. pp. 537-544. DOI: https://doi.org/10.18257/raccefyn.31(121).2007.2208
R. Moreno. Reología de Suspensiones Cerámicas. 1st ed. Ed. Consejo Superior de Investigaciones Científicas. Madrid, España. 2005. pp. 27-277.
A. Avgustinik. Cerámica. 2nd ed. Ed. Reverte. Barcelona, España. 1983. pp. 89-93.
M. Paria, S. Bazu, A. Paul. “Enhanced sintering of tin oxide with additives under isothermal condition”. Trans. Indian Ceram. Soc. Vol. 42. 1983. pp. 90-95. DOI: https://doi.org/10.1080/0371750X.1983.10822639
N. Dolet, J. Heintz, M. Onillon, J. Bonnet. “Densification of 0.99 tin (IV) oxide – 0.01 copper (II) oxide mixture: evidence for liquid phase sintering”. J. Eur. Ceram. Soc. Vol. 9. 1992. pp. 19-25. DOI: https://doi.org/10.1016/0955-2219(92)90072-L
K. Biddle, A. Das, K. Jones, H. Emblem. “The chemistry of ethyl silicate binders in refractory tecnology”. J. Appl. Chem. Biotechnol. Vol. 27. 1977. pp. 565-573. DOI: https://doi.org/10.1002/jbt.2570270411
C. Brinker, G. Scherer. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. 1st ed. Ed. Academic Press, Inc. San Diego, USA. 1990. pp. 21- 353.
J. Marck, H. Allcock, R. West. Inorganic Polymers. 2nd ed. Ed. Oxford University Press. Oxford, UK. 2005. pp. 100-150. DOI: https://doi.org/10.1093/oso/9780195131192.003.0013
F. Doreau, G. Tari, C. Pagnouse, T. Chartier, J. Ferreira. “Processing of aqueous tape – casting of alumina with acrylic emulsión binders”. J. Eur. Ceram. Soc. Vol. 18. 1998. pp. 311-321. DOI: https://doi.org/10.1016/S0955-2219(97)00144-1
P. Boch, J. Nièpce. Ceramic Materials: Processes, properties and applications. 2nd ed. Ed. ISTE Ltd. London, UK. 2007. pp. 123-194. DOI: https://doi.org/10.1002/9780470612415
I. García, A. Gouveia, F. Sensado, E. Leite, E. Longo, J. Varela. “Rheological properties of tin oxide suspensions”. J. Eur. Ceram. Soc. Vol. 22. 2002. pp. 1297-1306. DOI: https://doi.org/10.1016/S0955-2219(01)00440-X
S. Bhattacharjee, M. Paria, H. Maiti. “Polyvinyl butyral as a dispersant for barium titanate in a nonaqueous suspension”. J. Mater. Sci. Vol. 28. 1993. pp. 6490-6495. DOI: https://doi.org/10.1007/BF01352219
A. Parker. “Poly(vinylbutyral-co-vinylalcohol) Tacticity and Aluminum, Oxide Surface Adsoption”. Macromolecules. Vol. 27. 1994. pp. 7363-7368. DOI: https://doi.org/10.1021/ma00103a016
A. Parker, S. Opalka, N. Dando, D. Weaver, P. Price. “Studies of polymer mobility in composite blends of poly(vinyl butyral) and alumina”. J. Appl. Polym. Sci. Vol. 48. 1993. pp. 1701-1707. DOI: https://doi.org/10.1002/app.1993.070481002
T. Yang, W. Chang, D. Viswanath. “Thermal degradation of poly (vinylbutyral) in alumina, mullite and silica composites”. J. Therm. Anal. Vol. 47. 1996. pp. 697-713. DOI: https://doi.org/10.1007/BF01981805
M. Bakht. “Thermal degradation of copolymers of vinyl alcohol and vinyl butyral”. Pakistan J. of Science and Industrial Research. Vol. 26. 1983. pp. 35-46.
J. Varela, O. Whittemore, M. Ball. “Pore size evoluion during sintering of ceramic oxides”. Ceram. Int. Vol. 16. 1990. pp. 177-189. DOI: https://doi.org/10.1016/0272-8842(90)90053-I
J. Varela, E. Longo, N. Barelli, A. S. Tanaka, W. A. Mariano. “Sintering of tin oxide in several atmospheres”. Cerȃmica. Vol. 31. 1985. pp. 241-246.
G. Pfaff, J. Bonnet. “Influence of SnO on the sintering behavior of tin oxide”. Ceram. Int. Vol. 23. 1997. pp. 257-261. DOI: https://doi.org/10.1016/S0272-8842(96)00036-3
K. Ihokura, J. Watson. The stannic oxide gas sensor. 1st ed. Ed. CRC Press, Inc. Boca Raton, USA. 1994. pp. 11-46.
R. German. Liquid phase sintering. 1st ed. Ed. Plenum Press. New York, USA. 1985. pp. 1-231. DOI: https://doi.org/10.1007/978-1-4899-3599-1_1
M. Ponce, M. Castro, C. Aldao. “Capacitance and resistance measurements of SnO2 thick-films”. J. Mater. Sci: Mater. Elec. Springer. Vol. 20. 2009. pp. 25-32. DOI: https://doi.org/10.1007/s10854-008-9590-8
Y. Chena, J. Wanga, X. Menga, Y. Zhonga, R. Lia, X. Suna, S. Yeb, S. Knightsb. “Pt–SnO2 /nitrogendoped CNT hybrid catalysts for proton-exchange membrane fuel cells (PEMFC): Effects of crystalline and amorphous SnO2 by atomic layer deposition”. J. Pow. Sourc. Vol. 238. 2013. pp. 144-149. DOI: https://doi.org/10.1016/j.jpowsour.2013.03.093
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Revista Facultad de Ingeniería

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.
Twitter