Measured pressures on the basis of bottom slab with gaps in the flow direction in a channel

Authors

  • Efraín del Risco Moreno Universidad del Valle
  • Edwin Hurtado Orobio Universidad del Valle
  • Mauricio González Betancourt Universidad del Valle

DOI:

https://doi.org/10.17533/udea.redin.16682

Keywords:

hydrodynamics pressure, uplift, linings, slabs, hydraulic model, stilling basins

Abstract

A study was conducted to determine whether the back edges of the longitudinal gaps of a floor tile fixed to the bottom of a canal with a supercritical flow convert kinetic energy into pressure energy using Froude numbers in the range of 2.84 to 10.12. In each test the pressure was measured on 16 points on the bottom surface of the tile with piezo-resistive transducers along three longitudinal lines: one central line with 8 sensors and two lateral lines with 4 sensors each on either side of the central line. In this manner the distribution of the median pressures under the test tile was determined. The test tile is similar to those used in civil engineering structures for the purpose of avoiding the erosive action of the turbulence of a supercritical flow. The analysis of the measured pressures shows that even when the top surfaces of the canal floor and of the protective block are in the same horizontal plane, the back edges of the longitudinal gaps transform the energy of velocity into pressure energy. In such a way a factor has been identified that intervenes in the production of the hydrodynamic force that lifts revetments of different structures, and that has until now been ignored in the study of this problem.

|Abstract
= 120 veces | PDF (ESPAÑOL (ESPAÑA))
= 69 veces|

Downloads

Download data is not yet available.

Author Biographies

Efraín del Risco Moreno, Universidad del Valle

Ciudad Universitaria Meléndez

Edwin Hurtado Orobio, Universidad del Valle

Ciudad Universitaria Meléndez

Mauricio González Betancourt, Universidad del Valle

Ciudad Universitaria Meléndez

References

F.W. Baisdell. “Development and Design of Saint Anthony Falls Stilling Basin”. Transactions of the ASCE. Vol. 113. 1948. pp. 483-520. DOI: https://doi.org/10.1061/TACEAT.0006103

D. Sorensen. Handbook of Applied Hydraulics. Ed. McGraw-Hill. New York. 1969. pp. 20-27.

A.R. Golzé. Handbook of Dam Engineering. Ed. Van Nostram Reinhold Co. New York. 1977. pp. 20-27.

F.G. Gunko, R.E. Vedeneev. “Macroturbulence of Flow Bellow Spillway Medium Head Dams and their Protection against Undermining”. Proceeding 12th IAHR Congress. Fort Collias. Vol. 2. 1967. pp. 135-143.

M.A. Jabara, J. Legas. “Selection of Spillway Plunge and Stilling Basins for Earth and Concrete Dams”. Proceedings 11th ICOLD Congress. Madrid. Q.1, R.17. 1973. pp. 269-287.

R. M. Khatsuria. Hydraulics of Spillways and Energy Dissipators. Marcel Dekker. New York. 2005. pp. 411- 424. DOI: https://doi.org/10.1201/9780203996980

A. J. Petarka. “Hydraulic Design of Stilling Basins and Dissipators”. USBR, Engineering Monograph. Vol. 25. 1983. pp. 12-14.

A. D. Prosanto, A. C. Figueroa, H. Lhez. “Spillway Design Criteria of the Quebrada of Ullum Reservoir”. Proceedings of 11th ICOLD Congrés, Madrid. Q.41, R.48. 1973. pp. 871-884.

T. Yedu-Koung, L.W. Mays. “Optimal Design of Stilling for Overflow Spillway”. J. of Hydraulic Division, Proceedings of the ASCE. Vol. 108. 1982. pp. 9-12.

M. A. Rahman. “Damage at the Karnafulli Dam Spillway”. J. of Hydraulic Division, Proceedings of the ASCE. Vol. 98. 1972. pp. 2155-2170. DOI: https://doi.org/10.1061/JYCEAJ.0003502

B. Sánchez, V. A. Capella. “Turbulence Effects on the Linning of Stilling Basins”. Proceedings ICOLD. Congrés des Grands Barrages. Madrid. Q.41, R.83. 1973. pp. 1575-1592.

L. Pei-Qing, L. Ai-Hua. “Model Discussion of Pressure Fluctuations Propagation within Lining Slab Joints in Stilling Basins”. Journal Of Hydraulic Engineering. ASCE. Vol. 133. 2007. pp. 618-624. DOI: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(618)

C. M. Ramos. Models for Study of the Hydrodynamic Actions on Hydraulic Structures, Recent Advances in Hydraulic Physical Modelling. Ed. Kluwer Academic Publishers. The Netherlands. Series E: Applied Sciences. Vol. 165. 1989. pp. 52-55. DOI: https://doi.org/10.1007/978-94-009-2344-7_4

A. Bellin, V. Fiorotto. “Direct Dynamic Force Measurements on Slab in Spillway Stilling Basin”. J. of Hydraulic Engineering, ASCE. Vol. 121. 1995. pp. 686-693. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1995)121:10(686)

C. E. Bowers, J. Toso, Karnafulli. “Project: Model Studies of Spillway Damage”. J. Hydraulic Engineering, ASCE. Vol. 114. 1988. pp. 469-483. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1988)114:5(469)

J. Farhoudi, R. Narayanan. “Force on Slab beneath Hydraulic Jump”. J. of Hydraulic Engineering. Vol. 117. 1991. pp. 64-82. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1991)117:1(64)

J. L. Sánchez, O. Fuentes. “Experimental Analysis of Macroturbulence Effects on the Linning of Stilling Basins”. Proceedings ICOLD, Treiziéme Congrés des Grands Barrages. New Delhi, Indian. Q.50, R.8. 1979. pp. 85-103.

M. H. Abdul Khader, K. Elango. “Turbulent Pressure Field beneath a Hydraulic Jump”. J. of Hydraulic Research. Vol. 12. 1974. pp. 469-487. DOI: https://doi.org/10.1080/00221687409499725

M. Akbari, M. Mital, B. Pande. “Pressure Fluctuations on the Floor of Free and Forced Hydraulic Jump”. Proceedings International Conference Modeling Civil Engineering Structures. Coventry. England. 1982. pp. 163-170.

C. E. Bowers, F. Y. Tsai. “Fluctuating Pressures in Spillway Stilling Basins”. J. Hydraulic Division. ASCE. Vol. 95. 1969. pp. 2071-2079. DOI: https://doi.org/10.1061/JYCEAJ.0002205

V. Fiorotto, A. Rinaldo. “Turbulent Pressure Fluctuations under Hydraulic Jumps”. J. of Hydraulic Research. Vol. 130. 1992. pp. 499-520. DOI: https://doi.org/10.1080/00221689209498897

N. Rajaratnam. “The Forced Hydraulic Jump”. Water Power. Vol. 10. 1964. pp. 14 -65.

F. J. Resch, H. J. Leutheusser. “Mesures des Tensions de Reynolds Dams le Ressaut Hydraulique”. Journal of Hydraulics Research. Vol. 10. 1972. pp. 409-428.

F. J. Resch, H. J. Leutheusser. “Mesures des Tensions de Reynolds dans le Ressaut Hydraulique”. J. of Hydraulic Research. Vol. 10. 1972. pp. 409-428. DOI: https://doi.org/10.1080/00221687209500033

M. E. del Risco. Inestabilidad del Revestimiento de Fondo de un Tanque Amortiguador. Tesis Doctoral, Facultad de Ingeniería. Universidad Nacional Autónoma de México. México D.F. 1989.

D. L. Dwoyer. “A Tile-Gap Flow Model for use in Aerodynamic Loads Assessment of Space Shuttle Thermal Protecticy System: Parallel Gap Faces”. NASA Technical Memorandum 83151. 1981. pp. 1-75.

E. Levi, J. A. Masa. “Estudio sobre la Flotación de Losas en Tanques Amortiguadores”. Memorias 2do Congreso Nacional de Hidráulica. Culiacán, México. 1972. pp.147-165.

E. Levi. Acción Hidrodinámica de la Corriente sobre Revestimientos de Tanque Amortiguadores. Informe Técnico, Instituto de Ingeniería, UNAM. 1981.

E. Levi, E. del Risco. “Search for the Cause of HighSpeed-Channel Revetment Failures”. ASCE, J. of Performance of Constructed Facilities. Vol. 3. 1989. pp. 125-136. DOI: https://doi.org/10.1061/(ASCE)0887-3828(1989)3:2(125)

J. Muylaert. “Aerothermodynamic Analysis of SpaceVehicle Phenomena”. ESA. Vol. 105. 2001. pp. 69-79.

V. Fiorotto, A. Rinaldo. “Fluctuating Uplift and Linnings Design in Spillway Stilling Basins”. J. Hydraulic Enginnering. ASCE. Vol. 118. 1992. pp. 578-596. DOI: https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(578)

S. Aki. “Dynamic Characteristic of the Force Acting on the Spillway Chute”. Proceedings 12th IAHR Congress. Vol. 2. 1967. pp. 163-170.

American Concrete Institute. Recommendations for Construction of Concrete Pavements and Concrete Bases. 1982. pp. 50-52.

J. N. Bradley, A. J. Petarka. “The Hydraulic Design of Stilling Basins”. J. Hydraulic Division, Proceedings of the ASCE. Vol. 38. 1957. pp. 1401-1 - 1406-17.

R. E. Coxon. “Control of Flow at Kainji Dam”. Proceeding ICOLD, Neuviéme Congrés des Grands Barrages. Istambul. 1967. pp. 145-168.

E. del Risco. Estudio del Levantamiento de una Losa de Revestimiento. Informe de Año Sabático, Facultad de Ingeniería. Universidad del Valle. 2006.

R. L. Haugen, A. M. Dhanak. “Momentum Transfer in Turbulent Separated Flow Past a Rectangular Cavity”. J. of Applied Mechanics. Transactions of the ASME. 1966. pp. 641-646. DOI: https://doi.org/10.1115/1.3625133

H. Rouse, T.T. Siao, S. Nagaratnam. “Turbulent Characteristics of Hydraulic Jump”. J. of Hydraulic Division, ASCE. Vol. 124. 1958. pp. 927 - 966. DOI: https://doi.org/10.1061/TACEAT.0007737

L. Rudavsky. “Selection of Spillway end Energy Dissipators in Prelimiray Planning of Dams Development”. Proceedings ICOLD, Douziéme Congrés des Grands Barrages. México. Q.46, R.9. 1976. pp. 153-180.

J. L. Sánchez, A.G. Echávez. Criterio Preliminar para el Diseño de Losas de Tanque Amortiguadores. Informe Técnico, Instituto de Ingeniería, UNAM. 1970.

E. Soucek, J. N. Gau. “Spillway and Closures for the Large Earth Dams on the Missouri River”. Proceeding ICOLD, Neuviéme Congrés des Grands Barrages. Istambul. 1967. pp. 29-55.

O. F. Vasiliev, V. I. Brukeyev. “Statistical Characteristics of Pressure Fluctuations in the Region of Hydraulic Jump”. Proceedings IAHR. Vol. 2. 1967. pp. 1-8.

Published

2013-09-18

How to Cite

del Risco Moreno, E., Hurtado Orobio, E. ., & González Betancourt, M. . (2013). Measured pressures on the basis of bottom slab with gaps in the flow direction in a channel. Revista Facultad De Ingeniería Universidad De Antioquia, (47), 39–52. https://doi.org/10.17533/udea.redin.16682