Cinética de la síntesis de acetato de nopilo mediante esterificación de ácido acético con nopol homogéneamente catalizada
DOI:
https://doi.org/10.17533/udea.redin.n89a03Palabras clave:
coeficientes de actividad, nopol, velocidad de reacción, constante de equilibrio, ácido sulfúricoResumen
Se estudió la esterificación de nopol con ácido acético para producir acetato de nopilo utilizando ácido sulfúrico como catalizador homogéneo. Los experimentos se llevaron a cabo en un reactor por lotes variando la temperatura (50, 60, 70 y 80 °C), la concentración del catalizador (0.0184, 0.0275, 0.0367 y 0.0480 molL−1 ) y la relación molar de ácido acético a nopol (1: 1, 1:2, 1:3 y 1: 4); la composición del equilibrio químico se midió a las condiciones de reacción. La conversión de equilibrio fue 63, 68, 71 y 75% a 50, 60, 70 y 80°C, respectivamente. La reacción se describió con un modelo de potencia simple con un modelo de segundo orden en ambas direcciones, usando concentraciones y actividades, las cuales se predijeron con el método de contribución de grupos UNIFAC. Se determinaron las constantes de velocidad de la reacción directa y la constante de equilibrio, las cuales aumentaron con la temperatura; se evaluó la relación del factor pre-exponencial con la cantidad de catalizador. La energía de activación y el factor pre-exponencial estimados para la reacción hacia adelante usando el modelo basado en concentración fueron respectivamente 18.08 kJmol−1 y 11126 Lmol−1h −1 con una concentración de catalizador de 0.0275 M. Usando el modelo basado en actividades la constante de velocidad directa fue 28.56 kJmol−1 y el factor pre-exponencial 33860 Lmol−1h −1 . La entalpía (34.90 kJmol−1 ) y la entropía (0.12 kJmol−1K−1 ) de reacción se determinaron usando la ecuación de van’t Hoff.
Descargas
Citas
E. Akbay and M. Altıokka, “Kinetics of esterification of acetic acid with n-amyl alcohol in the presence of amberlyst-36,” Appl. Catal. A: Gen., vol. 396, no. 1-2, pp. 14–19, Apr. 2011.
S. H. Ali, A. Tarakmah, S. Merchant, and T. Al-Sahhaf, “Synthesis of esters: Development of the rate expression for the dowex 50 Wx8-400 catalyzed esterification of propionic acid with 1-propanol,” Chem. Eng. Sci., vol. 62, no. 12, pp. 3197–3217, Jun. 2007.
H. Pardel, S. Sarron, and C. Roy, “α-terpineol from Hydration of Crude Sulfate Turpentine Oil,” J. Agric. Food Chem., vol. 49, no. 9, pp. 4337–4341, Aug. 2001.
T. Chatterjee and D. Bhattacharyya, “Synthesis of terpene esters by an immobilized lipase in a solvent-free system,” Biotechnol. Lett., vol. 20, no. 9, pp. 865–868, Sep. 1998.
P. A. Mullen, “Fragrance-containing insect repellant compositions,” U.S. Patent 2 005 002 980, Jan. 6, 2005.
D. Belsito and et al, “A toxicologic and dermatologic assessment of cyclic and non-cyclic terpene alcohols when used as fragrance ingredients,” Food Chem. Toxicol., vol. 46, no. 11, pp. S1–S71, Nov. 2008.
K. B. D. Garbe and H. Surburg, Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 4th ed. Weinheim, Germany: Wiley-VCH, 2001.
W. Poucher, Poucher’s Perfumes, Cosmetics and Soaps — Volume 1: The Raw Materials of Perfumery, 1st ed. Netherlands: Springer, 1991.
A. Corma and M. Renz, “Water-resistant lewis-acid sites: carbonyl-ene reactions catalyzed by tin-containing, hydrophobic molecular sieves,” Arkivoc, vol. 8, pp. 40–48, 2007.
D. Opdyke, Monographs on Fragrance Raw Materials: A Collection of Monographs Originally Appearing in Food and Cosmetics Toxicology, 1st ed. New York, USA: Pergamon Press Inc, 1979.
P. E. JagadeeshBabu, K. Sandesh, and M. B. Saidutta, “Kinetics of Esterification of Acetic Acid with Methanol in the Presence of Ion Exchange Resin Catalysts,” Ind. Eng. Chem. Res., vol. 50, no. 12, pp. 7155–7160, Apr. 2009.
J. Lilja and et al, “Kinetics of esterification of propanoic acid with methanol over a fibrous polymer-supported sulphonic acid catalyst,” Applied Catalysis A: General, vol. 228, no. 1–2, pp. 253–267, Mar. 2002.
R. Rönnback and et al, “Development of a kinetic model for the esterification of acetic acid with methanol in the presence of a homogeneous acid catalyst,” Chem. Eng. Sci., vol. 52, no. 19, pp. 3369–3381, Oct. 1997.
Y. Liu, E. Lotero, and J. G. Goodwin, “A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis,” J. Catal., vol. 242, no. 2, pp. 278–286, Sep. 2006.
S. Geyer, W. Zeiger, and R. Mayer, “Säurekatalysierte Umwandlungen in der Monoterpenreihe,” Z. Chem., vol. 6, no. 4, pp. 138–146, Apr. 1996.
M. Chiplunkar, M. Hong, M. F. Malone, and M. F. Doherty, “Experimental study of feasibility in Kinetically-Controlled Reactive Distillation,” A´IChE J, vol. 51, no. 2, pp. 464–479, Feb. 2005.
C. Beula and P. T. Sai, “Kinetics of Esterification of Acetic Acid and Ethanol with a Homogeneous Acid Catalyst,” Ind. Chem. Eng., vol. 57, no. 2, pp. 177–196, 2015.
G. Jyoti, A. Keshav, J. Anandkumar, and S. Bhoi, “Homogeneous and Heterogeneous Catalyzed Esterification of Acrylic Acid with Ethanol: Reaction Kinetics and Modeling,” Int. J. Chem. Kinet., vol. 50, no. 5, pp. 370–380, Mar. 2018.
G. Jyoti, A. Keshav, and J. Anandkumar, “Experimental and Kinetic Study of Esterification of Acrylic Acid with Ethanol Using Homogeneous Catalyst,” Int. J. Chem. Reactor Eng., vol. 14, no. 2, pp. 571–578, 2016.
S. W. Liu and et al, “Reactions of α-pinene using acidic ionic liquids as catalysts,” J. Mol. Catal. A: Chem, vol. 279, no. 2, pp. 177–181, Jan. 2008.
S. Liu, C. X. Xie, S. T. Yu, F. S. Liu, and K. H. Ji, “Esterification of α-pinene and acetic acid using acidic ionic liquids as catalysts,” Catal. Commun., vol. 9, no. 7, pp. 1634–1638, Apr. 2008.
L. Li and et al, “Synthesis of terpinyl acetate using octadecylamine ethoxylate ionic liquids as catalysts,” Res. Chem. Intermed., vol. 39, no. 5, pp. 2095–2105, May. 2013.
D. J. Tao and et al, “Tuning the acidity of sulfonic functionalized ionic liquids for highly efficient and selective synthesis of terpene esters,” J. Ind. Eng. Chem., vol. 41, pp. 122–129, Sep. 2016.
X. Chen and T. O. Z. Xu, “Liquid phase esterification of acrylic acid with 1-butanol catalyzed by solid acid catalysts,” Appl Catal A: Gen, vol. 180, no. 1-2, pp. 261–269, Apr. 1999.
J. Lilja and et al, “Esterification of different acids over heterogeneous and homogeneous catalysts and correlation with the taft equation,” J Mol Catal A: Chem., vol. 182–183, pp. 555–563, May. 2002.
Y. Liu, E. Lotero, and J. G. Goodwin, “Effect of water on sulfuric acid catalyzed esterification,” J Mol Catal A: Chem., vol. 245, no. 1-2, pp. 132–140, Feb. 2006.
E. Lotero and et al, “Synthesis of Biodiesel via Acid Catalysis,” Ind. Eng. Chem. Res., vol. 44, no. 14, pp. 5353–5363, Jan. 2005.
M. Mekala and V. R. Goli, “Kinetics of esterification of methanol and acetic acid with mineral homogeneous acid catalyst,” Chin. J. Chem. Eng., vol. 23, no. 1, pp. 100–105, Jan. 2015.
Z. Xu and K. Chuang, “Kinetics of acetic acid esterification over ion exchange catalysts,” Can. J. Chem. Eng., vol. 74, pp. 493–500, Mar. 1996.
M. de Jong, R. Feijt, E. Zondervan, T. Nijhuis, and A. de Haan, “Reaction kinetics of the esterification of myristic acid with isopropanol and n-propanol using p-toluene sulphonic acid as catalyst,” Appl Catal A: Gen., vol. 365, no. 1, pp. 141–147, Aug. 2009.
T. Pöpken, L. Götze, and J. Gmehling, “Reaction Kinetics and Chemical Equilibrium of Homogeneously and Heterogeneously Catalyzed Acetic Acid Esterification with Methanol and Methyl Acetate Hydrolysis,” Ind. Eng. Chem. Res., vol. 39, no. 7, pp. 2601– 2611, Jun. 2000.
D. J. Tao and et al, “Kinetics for the Esterification Reaction of n-Butanol with Acetic Acid Catalyzed by Noncorrosive Brønsted Acidic Ionic Liquids,” Ind. Eng. Chem. Res., vol. 50, no. 4, pp. 1989–1996, Jan. 2011.
O. Levenspiel, Chemical Reaction Engineering, 3rd ed. New York, USA: John Wiley Sons, 1999.
D. Othmer and S. Rao, “n-Butyl Oleate from n-Butyl Alcohol and Oleic Acid,” Ind. Eng. Chem., vol. 42, no. 9, pp. 1912–1919, Sep. 1950.
M. Altiokka and A. Citak, “Kinetics study of esterification of acetic acid with isobutanol in the presence of amberlite catalyst,” Appl. Catal. A: Gen., vol. 239, no. 1-2, pp. 141–148, Jan. 2003.
G. D. Yadav and P. H. Mehta, “Heterogeneous Catalysis in Esterification Reactions: Preparation of Phenethyl Acetate and Cyclohexyl Acetate by Using a Variety of Solid Acidic Catalysts,” Ind. Eng. Chem. Res., vol. 33, no. 9, pp. 2198–2208, Sep. 1994.
R. Aafaqi, A. R. Mohamed, and S. Bhatia, “Kinetics of esterification of palmitic acid with isopropanol using ptoluene sulfonic acid and zinc ethanoate supported over silica gel as catalysts,” J Chem Technol Biotechnol, vol. 79, pp. 1127–1134, Sep. 2004.
T. Komón, P. Niewiadomski, P. Oracz, and M. E. Jamróz, “Esterification of acrylic acid with 2-ethylhexan-1-ol: Thermodynamic and kinetic study,” Applied Catalysis A: General, vol. 451, pp. 127–136, Jan. 2013.
S. Chandane, A. Rathod, K. Wasewar, and S. Sonawane, “Process optimization and kinetic modeling for esterification of propionic acid with benzyl alcohol on ion-exchange resin catalyst,” Korean J Chem Eng., vol. 34, no. 4, pp. 987–996, Apr. 2017.
A. Kouzekonani and M. Mahdavian, “Modeling of esterification in a batch reactor coupled with pervaporation for production of ethyl acetate catalyzed by ion- exchange resins,” Adv. Environ. Technol, vol. 2, pp. 69–75, 2015.
A. Fredenslund, R. Jones, and J. Prausnitz, “Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures,” AIChE J., vol. 21, no. 6, pp. 1086–1099, Nov. 1975.
B. E. Polling, J. M. Prausnitz, and J. P. O’Connell, The properties of gases and liquids, 5th ed. NY, USA: McGraw-Hill, 2001.
B. Erdem and M. Cebe, “Kinetics of esterification of propionic acid with n-amyl alcohol in the presence of cation exchange resins,” Korean J. Chem. Eng., vol. 23, no. 6, pp. 896–901, Nov. 2006.
L. Ma, Y. Han, K. Sun, J. Lu, and J. Ding, “Kinetic and thermodynamic studies of the esterification of acidified oil catalyzed by sulfonated cation exchange resin,” J. Energy Chem., vol. 24, no. 4, pp. 456–462, Jul. 2015.
S. Schwarzer and U. Hoffmann, “Experimental Reaction Equilibrium and Kinetics of the Liquid phase Butyl Acrylate Synthesis Applied to Reactive Distillation Simulations,” Chem. Eng. Technol., vol. 25, no. 10, pp. 975–980, Oct. 2002.
J. E. House, Principles of chemical kinetics, 2nd ed. New York, USA: Elsevier Inc., 1997.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.