Reciclado de espuma flexible de poliuretano mediante glicólisis usando hidrotalcitas Zn/Sn/Al como catalizador heterogéneo

Autores/as

  • Yesica Dayana Morcillo-Bolaños Universidad de Antioquia
  • William José Malule-Herrera Universidad de Antioquia
  • Juan Carlos Ortiz-Arango Universidad de Antioquia
  • Aída Luz Villa-Holguín Universidad de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.n87a10

Palabras clave:

poliuretano, reciclado químico, catalizador Zn/Sn/Al, pruebas de compresión, poliol, desechos de espuma

Resumen

El poliuretano es un material altamente versátil usado en la industria de aislamiento, empaque y comodidad. La producción global de poliuretano genera millones de toneladas de residuos no biodegradables. En esta investigación se exploró la recuperación por métodos químicos del poliol a partir de desechos de espuma flexible de poliuretano (PUF). El poliol se recuperó del PUF mediante glicólisis con dietilenglicol (DEG) como agente de glicólisis, la hidrotalcita Zn/Sn/Al (HTC) como catalizador heterogéneo bajo atmósfera inerte usando varias condiciones de reacción. Las condiciones más adecuadas de reacción fueron 3 h, relación másica PUF/DEG de 1,5 y HTC/DEG de 0,001. La HTC se caracterizó por FTIR, XRD, TEM y análisis químico. El poliol recuperado se caracterizó usando IR, viscosimetría y GPC; adicionalmente se determinó la densidad y el contenido de agua. El poliol recuperado se usó en la síntesis de PUF como reemplazo parcial del poliol comercial y la espuma obtenida se analizó usando pruebas de compresión.

|Resumen
= 651 veces | PDF (ENGLISH)
= 325 veces|

Descargas

Biografía del autor/a

Yesica Dayana Morcillo-Bolaños, Universidad de Antioquia

Grupo de Investigación Catálisis Ambiental, Departamento de Ingeniería Química.

William José Malule-Herrera, Universidad de Antioquia

Grupo de Investigación Catálisis Ambiental, Departamento de Ingeniería Química.

Juan Carlos Ortiz-Arango, Universidad de Antioquia

Grupo de Investigación Catálisis Ambiental, Departamento de Ingeniería Química.

Aída Luz Villa-Holguín, Universidad de Antioquia

Grupo de Investigación Catálisis Ambiental, Departamento de Ingeniería Química.

Citas

C. Defonseka, “Propiertes and Foaming Technology of Polyurethane Foam,” in Practical Guide to Flexible Polyurethane Foams. United Kingdom: Smithers Rapra Technology, 2013, pp. 58–60.

M. M. Alavi, “Brief Review of the Methods of Recycling of Polyurethane Foam Wastes,” in Recycling of Polyurethane Wastes. United Kingdom: Smithers Rapra, 2016, pp. 13–48.

H. Ulrich, A. Odinak, B. Tucker, and A. A. R. Sayigh, “Recycling of Polyurethane and Polyisocyanurate foam,” Polymer Engineering & Science, vol. 18, no. 11, pp. 844–848, Aug. 1978.

M. Murai, M. Sanou, T. Fujimoto, and F. Baba, “Glycolysis of Rigid Polyurethane Foam under Various Reaction Conditions,” J. Cell. Plast., vol. 39, no. 1, pp. 15–27, Jan. 2003.

M. M. Alavi and F. H. A. Mohammadi, “Sorbitol/glycerin/water ternary system as a novel glycolysis agent for flexible polyurethane foam in the chemical recycling using microvawe radiation,” Polimery, vol. 54, no. 7-8, pp. 541–545, 2009.

M. M. Alavi, M. Haghshenas, and A. B. Garmarudi, “Glycolysis of Waste Polyurethane Integral Skin Foams from Steering Wheel,” Polym. Plast. Technol. Eng., vol. 45, no. 4, pp. 569–573, Feb. 2006.

C. Molero, A. de Lucas, and J. F. Rodríguez, “Recovery of polyols from flexible polyurethane foam by ’split-phase’ glycolysis with new catalysts,” Polymer Degradation and Stability, vol. 91, no. 4, pp. 894–901, Apr. 2006.

C. H. Wu, C. Y. Chang, C. M. Cheng, and H. C. Huang, “Glycolysis of waste flexible polyurethane foam,” Polym. Degrad. Stab., vol. 80, no. 1, pp. 103–111, 2003.

C. Molero, A. de Lucas, F. Romero, and J. F. Rodríguez, “Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst,” Journal of Material Cycles and Waste Management, vol. 11, no. 2, pp. 130–132, May 2009.

D. Simón, M. T. García, A. de Lucas, A. M. Borreguero, and J. F. Rodríguez, “Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: Study on the influence of reaction parameters,” Polymer Degradation and Stability, vol. 98, no. 1, pp. 144–149, Jan. 2013.

M. Zhu, S. Li, Z. Li, X. Lu, and S. Zhang, “Investigation of solid catalysts for glycolysis of polyethylene terephthalate,” Chemical Engineering Journal, vol. 185-186, pp. 168–177, Mar. 2012.

M. Zhu, Z. Li, Q. Wang, X. Zhou, and X. Lu, “Characterization of Solid Acid Catalysts and Their Reactivity in the Glycolysis of Poly(ethylene terephthalate,” Ind. Eng. Chem. Res., vol. 51, no. 36, pp. 11 659–11 666, Aug. 2012.

F. Chen, F. Yang, G. Wang, and W. Li, “Calcined Zn/Al hydrotalcites as solid base catalysts for glycolysis of poly(ethylene terephthalate),” J. Appl. Polym. Sci., vol. 131, pp. 1–10, Jun. 2014.

C. Molero, A. D. Lucas, and J. F. Rodríguez, “Recovery of polyols from flexible polyurethane foam by ’split-phase’ glycolysis: Study on the influence of reaction parameters,” Polymer Degradation and Stability,, vol. 93, no. 2, pp. 353–361, Feb. 2008.

T. Wang, Z. Yang, B. Yang, R. Wang, and J. Huang, “The electrochemical performances of Zn-Sn-Al-hydrotalcites in Zn-Ni secondary cells,” Journal of Power Sources, vol. 257, no. 36, pp. 174–180, Jul. 2014.

R. Wang, Z. Yang, B. Yang, and T. W. Chu, “Superior cycle stability and high rate capability of Zn-Al-In-hydrotalcite as negative electrode materials for Ni-Zn secondary batteries,” Journal of Power Sources, vol. 251, pp. 344–350, Apr. 2014.

N. H. et al, “Modeling of glycolysis of flexible polyurethane foam wastes by artificial neural network methodology,” Polymer International, vol. 64, no. 9, pp. 1111–1120, Jan. 2015.

Standard Test Method for Polyurethane Raw Materials : Determination of Specific Gravity of Polyols 1 TEST METHOD A — SPECIFIC GRAVITY USINGA, ASTM Compass, 2017.

E. M. Ravei and M. Pearce, “Flexible Polyurethane Foam .L. Thermal Decomposition of a Polyether-based, Water-blown Commercial Type of Flexible Polyurethane Foam,” Journal of Applied Polymer Science, vol. 63, no. 1, p. 47–74, Dec. 1998.

F. Bruma, “Application of hydrotalcites as adsorbents for the reduction of contamination by water and soil pesticides,” M.S. thesis, University of Cordoba. Science Faculty, Monteria, Colombia, 2010.

C. A. Antonyraj, P. Koilraj, and S. Kannan, “Synthesis of delaminated LDH: A facile two step approach,” Chem. Commun., vol. 46, no. 11, pp. 1902––1904, Jan. 2010.

K. Okamoto, N. Iyi, and T. Sasaki, “Factors affecting the crystal size of the MgAl-LDH (layered double hydroxide) prepared by using ammonia-releasing reagents,” Applied Clay Science, vol. 37, no. 1-2, pp. 23–31, Jun. 2007.

K. Abderrazek, N. F. Srasra, and E. Srasra, “Synthesis and Characterization of [Zn-Al] Layered Double Hydroxides: Effect of the Operating Parameters,” Journal of the Chinese Chemical Society, vol. 64, no. 3, pp. 346–353, Feb. 2017.

M. Geetanjali, D. Barsha, S. Diptipriya, P. Sony, and B. K. Mishra, “Orientation of Organic Anions in Zn-Al Layered Double Hydroxides with Enhanced Antibacterial Property,” Environmental Engineering Science, vol. 34, no. 7, pp. 516–527, Jul. 2017.

BASF. (2015) Safety Sheet PLuRACOL 4156 POLYOL. Accessed Nov. 9, 2017. [Online]. Available: https: //worldaccount.basf.com/wa/{N}{A}{F}{T}{A}~en_{U}{S}/{C}atalog/ {P}olyurethane/info/{B}{A}{S}{F}/{P}{R}{D}/30426020.

S. P. Technology. (2017) BASF Pluracol 4156 Slabstock Foam Polyol. Accessed Nov. 9, 2017. [Online]. Available: http://www.matweb.com/search/{Data}{Sheet}.aspx?{M}at{G}{U}{I}{D}=225071fd65a04f929a34122ec3e9e7cf&ckck=1.

M. M. Alavi, M. Haghshenas, and A. B. Garmarundi, “Glycolysis of waste polyurethane integral skin foams from sterring wheel,” Polymer-Plastics Technology and Engineering, vol. 45, no. 4, pp. 569–573, Feb. 2006.

D. Simón, A. de Lucas, J. F. Rodríguez, and A. M. Borreguero, “Glycolysis of high resilience flexible polyurethane foams containing polyurethane dispersion polyol,” Polymer Degradation and Stability. Syst., vol. 133, pp. 119–130, Nov. 2016.

P. C. Painter and M. M. Coleman, “Polymer science fundamentals,” in Nature of polymeric materials. Pensilvania: Technomic Publishing Company, 1996, p. 22.

M. C. Gutiérrez, A. Burdó, and J. Cegarra, “Chromatography of exclusion: Analysis of the distribution of molecular weights in silicones by GPC,” INTEXTER BULLETIN (U.P.C.), no. 135, pp. 33–40, 2009.

D. V. W. M. D. Vries, “Characterization of polymeric foams,” M.S. thesis, Eindhoven University of Technology, Netherlands, Eindhoven, 2009.

Descargas

Publicado

2018-06-07

Cómo citar

Morcillo-Bolaños, Y. D., Malule-Herrera, W. J., Ortiz-Arango, J. C., & Villa-Holguín, A. L. (2018). Reciclado de espuma flexible de poliuretano mediante glicólisis usando hidrotalcitas Zn/Sn/Al como catalizador heterogéneo. Revista Facultad De Ingeniería Universidad De Antioquia, (87), 77–85. https://doi.org/10.17533/udea.redin.n87a10
Crossref
0
Scopus
10
Perli G. (2025)
Toward a Circular Economy of Heteroatom Containing Plastics: A Focus on Heterogeneous Catalysis in Recycling. Langmuir, 41(10), 6429-6456.
10.1021/acs.langmuir.4c04015
Yang F. (2024)
Research progress on polyurethane waste disposal and recycling technology. Chinese Journal of Environmental Engineering, 18(10), 2655-2663.
10.12030/j.cjee.202402018
Cirujano F.G. (2024)
On the metal- and bio-catalyzed solvolysis of polyesters and polyurethanes wastes. RSC Sustainability, 2(10), 2781-2804.
10.1039/d4su00233d
Wieczorek K. (2024)
Recycling of Polyurethane Foams via Glycolysis: A Review. Materials, 17(18),
10.3390/ma17184617
Beyerlein G.S. (2023)
Novel robust upcycling approach for the manufacture of value-added polymers based on mixed (poly)urethane scraps. Journal of Sol-Gel Science and Technology, 108(2), 528-537.
10.1007/s10971-023-06185-9
Kumar M. (2023)
Retrieving back plastic wastes for conversion to value added petrochemicals: opportunities, challenges and outlooks. Applied Energy, 345,
10.1016/j.apenergy.2023.121307
Kumari S. (2022)
Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability. Chemosphere, 306,
10.1016/j.chemosphere.2022.135464
Yang R.X. (2022)
Thermochemical Conversion of Plastic Waste into Fuels, Chemicals, and Value-Added Materials: A Critical Review and Outlooks. ChemSusChem, 15(11),
10.1002/cssc.202200171
Gu X. (2021)
Glycolysis recycling of waste polyurethane rigid foam using different catalysts. Journal of Renewable Materials, 9(7), 1253-1266.
10.32604/jrm.2021.014876
Heiran R. (2021)
Glycolysis: an efficient route for recycling of end of life polyurethane foams. Journal of Polymer Research, 28(1),
10.1007/s10965-020-02383-z