Puntos críticos, ciclos diarios y dosis diaria de PM2.5 para una cicloruta en Medellín

Autores/as

  • Alejandro Builes-Jaramillo Institución Universitaria Colegio Mayor de Antioquia https://orcid.org/0000-0002-3474-6922
  • Julián Gómez-Bedoya Institución Universitaria Colegio Mayor de Antioquia
  • Stephania Lopera-Uribe Institución Universitaria Colegio Mayor de Antioquia
  • Valeria Fajardo-Castaño Institución Universitaria Colegio Mayor de Antioquia

DOI:

https://doi.org/10.17533/udea.redin.20191153

Palabras clave:

contaminación atmosférica, vigilancia ambiental, higiene ambiental, gestión ambiental

Resumen

Los sistemas de bicicletas compartidas son una alternativa para promover el transporte sostenible y la vida activa. Los ciclistas están expuestos al tráfico y a contaminantes en sus viajes; por lo tanto, el análisis de concentraciones de contaminantes y la exposición de los usuarios es importante para planificar la expansión de estos sistemas. Diseñamos una ruta dentro del sistema de bicicletas compartidas de Medellín para evaluar concentraciones y la exposición de ciclistas a PM2.5, las mediciones se realizaron con un sensor de bajo costo validado con información local. La dosis diaria promedio de PM2.5 se calculó con base en el tiempo promedio de exposición y el nivel de esfuerzo al usar la bicicleta. Los puntos críticos se identificaron como las zonas en la ruta con concentraciones de tres desviaciones estándar por encima del promedio. Se encontró que las concentraciones de PM2.5 son muy variables en términos de hora del día y temporada del año. Cuando las concentraciones son más altas, la dosis diaria promedio se duplica. Hay dos tipos de puntos críticos de acuerdo con la configuración del entorno en la ruta, y las concentraciones en estas zonas alcanzan valores considerados perjudiciales para grupos de población sensibles. Los resultados son clave para procesos de implementación de medidas que mejorarán el bienestar de los ciclistas en Medellín, que pueden abarcar desde la intervención de infraestructura hasta los sistemas de alerta temprana.

|Resumen
= 1154 veces | PDF (ENGLISH)
= 797 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Alejandro Builes-Jaramillo, Institución Universitaria Colegio Mayor de Antioquia

Profesor asociado, Facultad de Arquitectura e Ingeniería.

Julián Gómez-Bedoya, Institución Universitaria Colegio Mayor de Antioquia

Profesor asociado, Facultad de Arquitectura e Ingeniería. Maestría en Desarrollo Sostenible, Instituto Tecnológico Metropolitano.

Stephania Lopera-Uribe, Institución Universitaria Colegio Mayor de Antioquia

Profesor asociado, Facultad de Arquitectura e Ingeniería, Departamento de Ingeniería Ambiental.

Valeria Fajardo-Castaño, Institución Universitaria Colegio Mayor de Antioquia

Profesor asociado, Facultad de Arquitectura e Ingeniería.

Citas

P. Demaio, “Bike-sharing: History, impacts, models of provision, and future,” J. Public Transp., vol. 12, no. 4, 2009. [Online]. Available: http://doi.org/10.5038/2375-0901.12.4.3

P. Midgley, “Bicycle-sharing schemes: enhancing sustainable mobility in urban areas,” United nations department of economic and social affairs, New York, USA, Tech. Rep. CSD19/2011/BP8, May 2011.

G. Stewart, N. K. Anokye, and S. Pokhrel, “What interventions increase commuter cycling? a systematic review,” BMJ Open, vol. 5, no. 8, August 14 2015. [Online]. Available: https://doi.org/10.1136/bmjopen-2015-007945

C. H. V. Cooper, “Using spatial network analysis to model pedal cycle flows, risk and mode choice,” J. Transp. Geogr., vol. 58, January 2017. [Online]. Available: https://doi.org/10.1016/j.jtrangeo.2016.12.003

L. Mertens and et al., “Built environmental correlates of cycling for transport across europe,” Heal. Place, vol. 44, March 2017. [Online]. Available: https://doi.org/10.1016/j.healthplace.2017.01.007

Moving Toward Active Transportation: How Policies Can Encourage Walking and Bicycling, Active Living Research, San Diego, CA, 2016.

L. Mertens and et al., “Differences in environmental preferences towards cycling for transport among adults: a latent class analysis,” BMC Public Health, vol. 16, August 12 2016. [Online].Available: https://doi.org/10.1186/s12889-016-3471-5

L. Mertens and et al., “Perceived environmental correlates of cycling for transport among adults in five regions of Europe,” Obes. Rev., vol. 17, January 2016. [Online]. Available: https://doi.org/10.1111/obr.12379

A. Y. Bigazzi and M. A. Figliozzi, “Review of urban bicyclists’ intake and uptake of traffic-related air pollution,” Transp. Rev., vol. 34, no. 2, April 08 2014. [Online]. Available: https://doi.org/10.1080/01441647.2014.897772

A. Y. Bigazzi, M. A. Figliozzi, W. Luo, and J. F. Pankow, “Breath biomarkers to measure uptake of volatile organic compounds by bicyclists,” Environ. Sci. Technol., vol. 50, no. 10, April 20 2016. [Online]. Available: https://doi.org/10.1021/acs.est.6b01159

D. W. Graff and et al., “Exposure to concentrated coarse air pollution particles causes mild cardiopulmonary effects in healthy young adults,” Environ. Health Perspect., vol. 117, no. 7, July 2009. [Online]. Available: https://doi.org/10.1289/ehp0900558

M. Tainio and et al., “Can air pollution negate the health benefits of cycling and walking?” Prev. Med., vol. 87, June 2016. [Online]. Available: https://doi.org/10.1016/j.ypmed.2016.02.002

Y. Hao and et al., “Prospective evaluation of respiratory health benefits from reduced exposure to airborne particulate matter,” Int. J. Environ. Health Res., vol. 27, no. 2, April 2017. [Online]. Available: https://doi.org/10.1080/09603123.2017.1292497

M. Kampa and E. Castanas, “Human health effects of air pollution,” Environ. Pollut., vol. 151, no. 2, January 2008. [Online]. Available: https://doi.org/10.1016/j.envpol.2007.06.012

J. Peters, J. Theunis, M. V. Poppel, and P. Berghmans, “Monitoring PM10 and ultrafine particles in urban environments using mobile measurements,” Aerosol Air Qual. Res., vol. 13, 2013. [Online]. Available: https://doi.org/10.4209/aaqr.2012.06.0152

H. Haddad and A. de Nazelle, “The role of personal air pollution sensors and smartphone technology in changing travel behaviour,” J. Transp. Heal., vol. 11, December 2018. [Online]. Available: https://doi.org/10.1016/j.jth.2018.08.001

C. Johansson and et al., “Impacts on air pollution and health by changing commuting from car to bicycle,” Sci. Total Environ., vol. 584-585, April 15 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2017.01.145

S. Simões, J. Carvalho, M. A. Martins, and C. Pinheiro, “An overview of particulate matter measurement instruments,” Atmosphere, vol. 6, no. 9, September 2015. [Online]. Available: https://doi.org/10.3390/atmos6091327

W. E. Wilson and et al., “Monitoring of particulate matter outdoors,” Chemosphere, vol. 49, no. 9, December 2002. [Online]. Available: https://doi.org/10.1016/S0045-6535(02)00270-9

B. R. Gurjar, T. M. Butler, M. G. Lawrence, and J. Lelieveld, “Evaluation of emissions and air quality in megacities,” Atmos. Environ., vol. 42, no. 7, March 2008. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2007.10.048

C. Carnevale and et al., “An integrated assessment tool to define effective air quality policies at regional scale,” Environ. Model. Softw., vol. 38, December 2012. [Online]. Available: https://doi.org/10.1016/j.envsoft.2012.07.004

(2018) Air pollution. World Health Organization. Accessed Sep. 10, 2019. [Online]. Available: https://bit.ly/35cbxlM

J. Bedoya and E. Martinez, “Calidad del aire en el valle de aburrá. antioquia colombia,” Rev. Dyna, vol. 76, no. 158, pp. 7–15, Dec. 2008.

A. M. Rendón, J. F. Salazar, C. A. Palacio, and V. Wirth, “Temperature inversion breakup with impacts on air quality in urban valleys influenced by topographic shading,” J. Appl. Meteorol. Climatol., vol. 54, no. 2, February 2015. [Online]. Available: https://doi.org/10.1175/JAMC-D-14-0111.1

Area Metropolitana del Valle de Aburrá. (2017, Jan. 29) Resolución 1379 de 2017. [Online]. Available: https://bit.ly/2QogKCP

Area Metropolitana del Valle de Aburrá. (2015, November) Plan maestro metropolitano de la bicicleta del valle de aburrá (PMB2030). [Online]. Available: https://bit.ly/2Xm8Uep

M. Gao, J. Cao, and E. Seto, “A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in xi’an, china,” Environ. Pollut., vol. 199, April 2015. [Online]. Available: https://doi.org/10.1016/j.envpol.2015.01.013

Y. Hu, J. Fan, H. Zhang, X. Chen, and G. Dai, “An estimated method of urban PM2.5 concentration distribution for a mobile sensing system,” Pervasive Mob. Comput., vol. 25, January 2016. [Online]. Available: https://doi.org/10.1016/j.pmcj.2015.06.004

P. Berghmans and et al., “Exposure assessment of a cyclist to PM10 and ultrafine particles,” Sci. Total Environ., vol. 407, no. 4, February 2009. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2008.10.041

F. Corno, T. Montanaro, C. Migliore, and P. Castrogiovanni, “Smartbike: An iot crowd sensing platform for monitoring city air pollution,” Int. J. Electr. Comput. Eng., vol. 7, no. 6, December 2017. [Online]. Available: https://doi.org/10.11591/ijece.v7i6.pp3602-3612

B. Elen and et al., “The aeroflex: A bicycle for mobile air quality measurements,” Sensors, vol. 13, no. 1, December 2012. [Online]. Available: https://doi.org/10.3390/s130100221

P. B. English, M. J. Richardson, and C. Garzón, “From crowdsourcing to extreme citizen science: Participatory research for environmental health,” Annu. Rev. Public Heal., vol. 39, April 2018. [Online]. Available: https://doi.org/10.1146/annurev-publhealth-040617-013702

J. Gabrys, “The becoming environmental of computation. from citizen sensing to planetary computerization,” Tecnoscienza, vol. 8, no. 1, pp. 5–21, 2017.

M. Madelin and S. Duché, “Low cost air pollution sensors: New perspectives for the measurement of individual exposure?” in 9th International Conference on Urban Climate, Toulouse, France, 2015, pp. 1–6.

(2018) Particle sensing. Shinyei Technology. Accessed Sep. 10, 2019. [Online]. Available: https://bit.ly/343eghd

(2015) The air casting platform. Habitatmap. Accessed Aug. 01, 2017. [Online]. Available: http://aircasting.org/

S. Sousan, K. Koehler, L. Hallett, and T. M. Peters, “Evaluation of consumer monitors to measure particulate matter,” J. Aerosol Sci., vol. 107, May 2017. [Online]. Available: https://doi.org/10.1016/j.jaerosci.2017.02.013

A. C. Rai and et al., “End-user perspective of low-cost sensors for outdoor air pollution monitoring,” Sci. Total Environ., vol. 607- 608, December 2017. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2017.06.266

K. Pearson, “Note on regression and inheritance in the case of two parents,” Proc. R. Soc. London, vol. 58, pp. 240–242, 1895.

B. Efron, “Better bootstrap confidence intervals,” J. Am. Stat. Assoc., vol. 82, no. 397, pp. 171–185, Mar. 1987.

Cielómetro cl51. Vaisala. Accessed Sep. 20, 2019. [Online]. Available: https://bit.ly/2QAUZzQ

S. Emeis, K. Schäfer, and C. Münkel, “Long-term observations of the urban mixing-layer height with ceilometers,” in IOP Conf. Ser. Earth Environ. Sci., Lyngby, Denmark, 2008, pp. 012–027.

M. Wiegner and et al., “What is the benefit of ceilometers for aerosol remote sensing? an answer from EARLINET,” Atmos. Meas. Tech., vol. 7, 2014. [Online]. Available: https://doi.org/10.5194/amtd-7-2491-2014

Exposure Factors Handbook, The United States Environmental Protection Agency, Washington, DC, 2011.

O. A. Fajardo and N. Y. Rojas, “Particulate matter exposure of bicycle path users in a high-altitude city,” Atmos. Environ., vol. 46, January 2012. [Online]. Available: https://doi.org/10.1016/j.atmosenv.2011.09.047

A. Y. Watson, R. R. Bates, and D. Kennedy, Air Pollution, the Automobile, and Public Health. Washington, US: National Academies Press, 1988.

S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete samples),” Biometrika, vol. 52, no. 3- 4, December 1965. [Online]. Available: https://doi.org/10.1093/biomet/52.3-4.591

J. Kuula and et al., “Applicability of optical and diffusion chargingbased particulate matter sensors to urban air quality measurements,” Aerosol Air Qual. Res., vol. 19, 2019. [Online]. Available: https://doi.org/10.4209/aaqr.2018.04.0143

L. Herrera, “Caracterización de la capa límite atmosférica en el Valle de Aburrá a partir de la información de sensores remotos y radiosondeos,” M.S. thesis, Universidad Nacional de Colombia, Medellín, Colombia, 2015.

Ministerio de Ambiente y Desarrollo Sostenible. (2017, Nov. 01) Resolución no. 2254. [Online]. Available: https://bit.ly/37nQ0bB

J. W. Cherrie and et al., “Effectiveness of face masks used to protect Beijing residents against particulate air pollution,” Occup. Environ. Med., vol. 75, no. 6, June 2018. [Online]. Available: https://doi.org/10.1136/oemed-2017-104765

S. S. Zhou and et al., “Assessment of a respiratory face mask for capturing air pollutants and pathogens including human influenza and rhinoviruses,” J. Thorac. Dis., vol. 10, no. 3, March 2018. [Online]. Available: https://doi.org/10.21037/jtd.2018.03.103

K. Ardon, Y. W. Huang, and D. J. Cziczo, “Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single-droplet basis,” Atmos. Chem. Phys., vol. 15, August 19 2015. [Online]. Available: https://doi.org/10.5194/acp-15-9159-2015

L. Chen, C. Liu, L. Zhang, R. Zou, and Z. Zhang, “Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5),” Sci. Rep., vol. 7, no. 1, June 2017. [Online]. Available: https://doi.org/10.1038/s41598-017-03360-1

B. A. Maher, I. A. M. Ahmed, B. M. Davison, V. Karloukovski, and R. Clarke, “Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter,” Environ. Sci. Technol., vol. 47, no. 23, November 2013. [Online]. Available: https://doi.org/10.1021/es404363m

Estudio del valor histórico, cultural, paisajístico y evaluación de impactos del componente ambiental para la construcción del tramo 2BMetroplús en escenarios con y sin proyecto, municipio de Envigado Antioquia, Metroplús and Universidad Nacional de Colombia, Envigado Antioquia, 2017.

Publicado

2020-02-21

Cómo citar

Builes-Jaramillo, A., Gómez-Bedoya, J., Lopera-Uribe, S., & Fajardo-Castaño, V. (2020). Puntos críticos, ciclos diarios y dosis diaria de PM2.5 para una cicloruta en Medellín. Revista Facultad De Ingeniería Universidad De Antioquia, (96), 87–99. https://doi.org/10.17533/udea.redin.20191153