Hidroituango- Cierre de emergencia compuertas de aducción

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20210847

Palabras clave:

Compuertas hidráulicas, Cierre a flujo libre, fuerzas hidrodinámicas, análisis de vibraciones, aireación

Resumen

Este artículo presenta la investigación, análisis y resultados del cierre de emergencia de dos compuertas de aducción verticales en el proyecto hidroeléctrico Ituango en Colombia (2400 MW) bajo condiciones de flujo libre. Esta operación se consideró exitosa a pesar de las condiciones adversas y atípicas presentes al momento de ejecutar la maniobra por lo que se puede clasificar como una operación única en el campo de las compuertas hidráulicas. El artículo presenta resultados de algunos parámetros relevantes como la fuerza hidráulica del servomotor que se midió durante la operación y además fue analizado antes y después del cierre de las compuertas. Se propone un nuevo coeficiente de downpull con base en los datos recopilados, que podría implementarse en el cierre de compuertas contra flujo libre. Teniendo en cuenta los factores antes mencionados, los autores proponen algunas recomendaciones y presentan conclusiones extraídas que contribuyen al estado del arte en el diseño, fabricación y operación de este tipo de compuertas y estructuras hidráulicas para grandes y pequeñas presas en condiciones adversas y extremas.

|Resumen
= 738 veces | HTML (ENGLISH)
= 0 veces| | PDF (ENGLISH)
= 420 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Bladimir Suárez, Empresas Públicas de Medellín

Ingeniero Magíster

José David Vera Rodríguez, Empresas Públicas de Medellín

Ingeniero Magíster

Francisco Botero, Universidad EAFIT

Profesor, Departamento de Ingeniería Mecánica

Byron Suárez Agudelo, Empresas Públicas de Medellín

Ingeniero Magíster

William Giraldo Jiménez, Empresas Públicas de Medellín

Ingeniero Magíster

Citas

Skava Consulting. (2019, Mar. 1,) Informe causa – raíz contingencia Proyecto Ituango. [YouTube video]. Accessed Ago. 29, 2020. [Online]. Available: https://www.epm.com.co/site/estudio-causa-raiz-proyecto-ituango

W. D. Construction. (2018, May. 8,) Recovery works underway following tunnel collapses at Ituango. Accessed Ago. 29, 2020. [Online]. Available: https://bit.ly/3CcQZuE

EPM. (2019, Jan. 17,) Avance informativo No. 104. Accessed Feb. 15, 2019. [Online]. Available: https://bit.ly/3lkgiFk

L. Carballada and et al., “Gate Failure, Numerical And Physical Modelling At Gouin Dam,” WITpress, vol. 84, no. 10, 2005. [Online]. Available: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/84/15720

A. N. Harkauli and V. S. Bhide, “Recent problems in high head gate installations in india,” Technology Rev, vol. 3, 1979.

Renewable Energy World. (2010, Jul. 1,) Dams & Civil Structures: A Challenging Gate Repair at Cowlitz Falls. Accessed, 2020. [Online]. Available: https://www.renewableenergyworld.com/baseload/dams-civil-structures-

/#gref

R. Pohl, “Dams & civil structures: A challenging gate repair at cowlitz falls,” International Journal on Hydropower and Dams, vol. 7, no. 6, 2000. [Online]. Available: https://bit.ly/3lGhQd5

B. T. A. Sagar, “Safe practices for high head outlet gates,” Technology Rev, vol. 3, 1979.

J. Tatalovich. (1998, Jan.) Comparison of failure modes from risk assessment and historical data for bureau of reclamation dams. [Online]. Available: https://www.usbr.gov/ssle/damsafety/TechDev/DSOTechDev/DSO-98-01.pdf

J. D. Vera, “Metodología para el control de riesgos en compuertas radiales de descarga de fondo para grandes presas,” M.S. thesis, Facultad de Minas, Universidad Nacional de Colombia, Colombia, 2013. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/11851

K. Yano, “On the event of gate destruction of the wachi dam,” in Disaster Prevention Research Institute, Annals of Kyoto University, 11–B, Kyoto University, Japan., 1968, pp. 1–17.

“Evolución de presas de enrocamiento compactado con face de concreto (ecfc) en el periodo de 1970 a 2015,” Revista VIAL, Nov. 10, 2017. [Online]. Available: https://bit.ly/3A8JyDa

D. Calderon, A. G. Benavides, and F. M. Toro. (2018) Cfd simulation of the air-water flow in the bottom outlet of ituango hydroelectric project - 7th international symposium on hydraulic structures. International Symposium on Hydraulic Structures. [Online]. Available: https://doi.org/10.15142/T3TW7D

H. T. Falvey. (198, Dec.) Air-water flow in hydraulic structures. [Online]. Available: https://ui.adsabs.harvard.edu/abs/1980STIN...8126429F/abstract

A. Ghetti and G. D. Silvio, “Investigation on the running of deep gated outlet works from reservoirs,” in Proceedings of the 9th International Congress on Large Dams, vol. 2, Q33 (R48), Istanbul, Turkey, 1976, pp. 837–852.

L. Levin, “Calcul hydraulique des conduits d’aération des vidanges de fond et dispositifs déversants,” La Houille Blanche, no. 2, 1965. [Online]. Available: https://doi.org/10.1051/lhb/1965011

H. R. Sharma, “Air-entrainment in high head gated conduits,” Journal of the Hydraulics Division, vol. 102, no. 11, Nov. 1976. [Online]. Available: https://doi.org/10.1061/JYCEAJ.0004650

I. Aydin, “Air demand behind high head gates during emergency closure,” Journal of Hydraulic Research, vol. 40, no. 1, 2002. [Online]. Available: https://doi.org/10.1080/00221680209499876

M. Brocchini and D. H. Peregrine, “The dynamics of strong turbulence at free surfaces. Part 1. Description,” Journal of Fluid Mechanics, vol. 449, Dec. 12, 2001. [Online]. Available: https://doi.org/10.1017/S0022112001006012

D. Valero and D. B. Bung, “Reformulating self-aeration in hydraulic structures: Turbulent growth of free surface perturbations leading to air entrainment,” International Journal of Multiphase Flow, vol. 100, Mar. 2018. [Online]. Available: https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.011

S. Felder and H. Chanson, “Scale effects in microscopic air-water flow properties in high-velocity free-surface flows,” Experimental Thermal and Fluid Science, vol. 83, May. 2017. [Online]. Available: https://doi.org/10.1016/j.expthermflusci.2016.12.009

S. Fujimoto and S. Takasu, “Historical development of large capacity outlets for flood control in japan,” in XIII ICOLD Congress, New Delhia, 1979.

(1981) Technical standards for gates and penstocks. Hydraulic Gate and Penstock Association. Japan. [Online]. Available: https://documents.pub/document/technical-standars-for-gates-and-penstocks.html

U.S. Army Corps of Engineers, “Hydraulic design criteria, air demand, regulated outlet works,” Tech. Rep. Sheet 050-1. 6,13,16,19,20,27,32, 1964.

P. C. F. Erbisti, Design of hydraulic gates, 2nd ed. London: CRC press, 2014.

F. H. Knapp, Ausfluss, Überfall und Durchfluss im Wasserbau – Eine angewandte Hydraulik auf physikalischer Grundlage. Braun Verlag Karlsruhe, 1960.

H. Kulka, Der Eiserwasserbau, Verlag v. Wilhelm, Ernst und Sohn, Berlin, 1928.

E.Naudascher, Hydrodynamic Forces. Rotterdam: A.A. Balkema, 1991.

B. T. A. Sagar, “ASCE Hydrogates Task Committee Design Guidelines for High-Head Gates,” Journal of Hydraulic Engineering, vol. 121, no. 12, Dec. 1, 1995. [Online]. Available: https://doi.org/10.1061/(ASCE)07339429(1995)121:12(845)

R. I. Murray and W. P. Simmons, Hydraulic Downpull Forces on Large Gates. Research Report No. 4. US Government Printing Office, 1966.

I. Aydin, I. T. Telci, and O. Dundar, “Prediction of downpull on closing high head gates,” Journal of Hydraulic Research, vol. 44, no. 6, Jan. 09, 2006. [Online]. Available: https://doi.org/10.1080/00221686.2006.9521733

ICOLD, Vibrations of hydraulic equipment for dams: Review and recommendations, bulletin 102 ed. París: International Commission on Large Dams, 1996.

P. A. Kolkman, Development of Vibrations-Free Gate Design: learning from experience and theory, número 219 ed. Delf Hydraulics Laboratory, 1979.

P. A. Kolkman and T. H. G. Jongeling, Dynamic behaviour of hydraulic structures. Delf Hydraulics, 2007.

J. Lewin, “Vibration of hydraulic gates,” Journal of the Institution of Water Engineers and Scientists, vol. 37, no. 2, 1983. [Online]. Available: https://bit.ly/3rXhsI7

E. Naudascher and D. Rockwell, Flow-Induced Vibrations: An Engineering Guide, 1st ed. London: Routledge, 1994.

E. Naudascher and D. Rockwell, Flow-Induced Vibrations: An Engineering Guide, 1st ed. Mineola, New York: Dover publications Inc, 2005.

S. S. Rao, Mechanical vibrations, 5th ed. Miami: Prentice Hall, 2004.

Publicado

2021-08-24

Cómo citar

Suárez, B., Vera Rodríguez, J. D., Botero, F., Suárez Agudelo, B., & Giraldo Jiménez, W. (2021). Hidroituango- Cierre de emergencia compuertas de aducción. Revista Facultad De Ingeniería Universidad De Antioquia, (104), 140–151. https://doi.org/10.17533/udea.redin.20210847