Eficacia de Tratamientos UV-VIS/H2O2/TiO2 y biológicos para la valorización de efluentes de un polígono industrial
DOI:
https://doi.org/10.17533/udea.redin.20250365Palabras clave:
Biological purification, UV-Vis/H2O2/TiO2, industrial wastewater, crops irrigation waterResumen
En este estudio se evaluó un tratamiento biológico y algunas Tecnologías Avanzadas de Oxidación (TAOs) como TiO₂/UV-VIS, H₂O₂-UV-VIS and TiO₂/H₂O₂/UV-VIS en el tratamiento de aguas residuales industriales. Los experimentos se llevaron a cabo en reactor a escala de laboratorio y en una planta piloto con capacidad de 120 L/s con autonomía de operación bajo luz solar. La aplicación individual del tratamiento biológico usando un cultivo bacteriano comercial permitió obtener una disminución significativa en los hidrocarburos totales, sulfatos, TOC, dureza, alcalinidad, DBO5, DQO en la muestra de agua residual inicial. Se observó también que la aplicación de los tratamientos combinados UV-VIS/H₂O₂/TiO₂, resultó más efectiva que el tratamiento biológico o las TAOs individuales, llevando a disminuir parámetros como conductividad, cloruros, nitratos, turbidez, grasas y aceites, sólidos suspendidos totales, sólidos sedimentables, acidez, TOC, bacterias coliformes totales y a la remoción de metales pesados (Zn, Cu, Cr, Ni, Fe y Pb). Adicionalmente, el uso del tratamiento secuencial, aplicando inicialmente TAOs y a continuación el tratamiento biológico, llevó a mejorar la remoción de contaminantes como cloruros, metales pesados (Fe y Pb), nitratos y dureza. En general, los resultados sugieren que la combinación secuencial de TAOs y el tratamiento biológico es una estrategia efectiva para la recuperación de aguas residuales industriales, logrando una alta reducción de los contaminantes, comparada con la aplicación de cada tratamiento separado, mejorando así la calidad final del agua tratada.
Descargas
Citas
I. Michalak, K. Chojnacka, Effluent Biomonitoring, in Encyclopedia of Toxicology (Third Edition), P. Wexler, Ed., ed Oxford: Academic Press, 2014, pp. 312-315.
A.D. Patwardhan, Industrial Wastewater Treatment, Prentice Hall India Pvt., Limited, 2017.
M. Ashrafivala, S.B. Mousavi, S. Zeinali Heris, M. Heidari, M. Mohammadpourfard, H. Aslani, "Investigation of H2O2/UV advanced oxidation process on the removal rate of coliforms from the industrial effluent: A pilot-scale study", Int. J. Hydrog. Energy., Vol. 47, pp. 33530-33540, 2022.
D. Antonio da Silva, R. Pereira Cavalcante, E. Batista Barbosa, A. Machulek Junior, S. César de Oliveira, R. Falcao Dantas, “Combined AOP/GAC/AOP systems for secondary effluent polishing: Optimization, toxicity and disinfection”, Sep. Purif. Technol., Vol. 263, pp. 1-14, 2021.
A. Di Cesare, M. De Carluccio, E.M. Eckert, D. Fontaneto, A. Fiorentino, G. Corno, P. Prete, R. Cucciniello, A. Proto, L. Rizzo, “Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H2O2 vs UVC/H2O2/Cu-IDS processes on pathogens and antibiotic-resistant genes in secondary wastewater effluents”, Water. Res., Vol. 184, pp. 1-9, 2020.
S. Naghash-Hamed, N. Arsalani, S.B. Mousavi, “The Catalytic Reduction of Nitroanilines Using Synthesized CuFe2O4 Nanoparticles in an Aqueous Medium”, Chemistry. Open., Vol. 11, pp. 1-10, 2022.
S. Naghash-Hamed, N. Arsalani, S.B. Mousavi, “Facile copper ferrite/carbon quantum dot magnetic nanocomposite as an effective nanocatalyst for reduction of para-nitroaniline and ortho-nitroaniline”, Nano. Futures., Vol. 6, pp. 1-21, 2022.
L. Kumar, R. Bidlan, J. Sharma, N. Bharadvaja, “Biotechnological management of water quality: A mini review”, Biosci. Biotechnol. Res. Commun., Vol. 12, pp. 140-146, 2019.
V.K. Gupta, I. Ali, Chapter 7 - Wastewater Treatment by Biological Methods, in Environmental Water, V. K. Gupta and I. Ali, Eds., ed: Elsevier, 2013 pp. 179-204.
A. Patel, I. Delgado Vellosillo, U. Rova, L. Matsakas, P. Christakopoulos, “A novel bioprocess engineering approach to recycle hydrophilic and hydrophobic waste under high salinity conditions for the production of nutraceutical compounds”, Chem. Eng. J., Vol. 431, pp. 1-20, 2022.
K.B. Chipasa, K. Mędrzycka, “Behavior of lipids in biological wastewater treatment processes”, J. Ind. Microbiol. Biotechnol., Vol. 33, pp. 635-645, 2006.
S. Ishak, A. Malakahmad, M.H. Isa, “Refinery wastewater biological treatment: A short review”, J. Sci. Ind. Res., Vol. 7, pp. 251-256, 2012.
T.E Doll, F.H Frimmel, “Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water”, Catal. Today., Vol. 101, pp. 195-202, 2005.
W.A. Freitas, B.E.C.F. Soares, M.S. Rodrigues, P. Trigueiro, L.M.C. Honorio, R. Peña-Garcia, A.C.S. Alcanta, E.C. Silva-Filho, M.G. Fonseca, M.B. Furtini, J.A. Osajima, “Facile synthesis of ZnO-clay minerals composites using an ultrasonic approach for photocatalytic performance”, J. Photochem. Photobiol. A: Chem., Vol. 429, pp. 1-12, 2022.
B. Zsirka, V. Vágvölgyi, E. Horváth, T. Juzsakova, O. Fónagy, E. Szabó-Bárdos, J. Kristóf, “Halloysite-Zinc Oxide Nanocomposites as Potential Photocatalysts”, Minerals., Vol. 12, pp. 1-20, 2022.
P. Bhatt, A. Verma, S. Gangola, G. Bhandari, S. Chen, Bhandari G and Chen S, “Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications”, Microb. Cell. Factories., Vol. 20, pp. 1-18, 2021.
A. Alvarez, J.M. Saez, J.S. Davila Costa, V.L. Colin, M.S. Fuentes, S.A. Cuozzo, C.S. Benimeli, M.A. Polti, M.J. Amoroso, “Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals”, Chemosphere., Vol. 166, pp. 41-62, 2017.
D. Bhatia, N. Sharma, J. Singh, R. Kanwar, “Biological methods for textile dye removal from wastewater: A Review”, Crit. Rev. Environ. Sci. Technol., Vol. 47, pp. 1836-1876, 2017.
S. Mishra, Z. Lin, S. Pang, W. Zhang, P. Bhatt, S. Chen, “Recent Advanced Technologies for the Characterization of Xenobiotic-Degrading Microorganisms and Microbial Communities”, Front. Bioeng. Biotechnol., Vol. 9, pp. 1-26, 2021.
M. Megharaj, R. Naidu, “Soil and brownfield bioremediation”, Microb. Biotechnol. Vol. 10, pp. 1244-1249, 2017.
P. Davies, “The Biological Basis of Wastewater Treatment”, 2006.
F. Sadeghfar, M. Ghaedi, Z, Zalipour, “Chapter 4 - Advanced oxidation, in Interface Science and Technology”. vol. 32, M. Ghaedi, Ed., ed: Elsevier, 2021, pp. 225-324.
M.B. Ray, J.P. Chen, L.K. Wang, S.O. Pehkonen, “Advanced Oxidation Processes, in Advanced Physicochemical Treatment Processes”, L. K. Wang, Y.-T. Hung, and N. K. Shammas, Eds., ed Totowa, NJ: Humana Press, 2006, pp. 463-481.
R. Mittler, “ROS Are Good”, Trends. Plant. Sci., Vol. 22, pp. 11-19, 2017.
H. Li, X. Zhou, Y. Huang, B. Liao, L. Cheng, B. Ren, “Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects”, Front. Microbiol., Vol. 11, pp. 1-9, 2021.
J. Murcia, J. Hernández, H. Rojas, J. Moreno-Cascante, P. Sánchez-Cid, M. Hidalgo, J.A. Navío, C. Jaramillo-Páez C, “Evaluation of Au–ZnO, ZnO/Ag2CO3 and Ag–TiO2 as Photocatalyst for Wastewater Treatment”, Top. Catal., Vol. 63, pp. 1286–1301, 2020.
I. De Pasquale, C. Lo Porto, M. Dell’Edera, F. Petronella, A. Agostiano, M.L. Curri, R. Comparelli, “Photocatalytic TiO2-Based Nanostructured Materials for Microbial Inactivation”, Catalysts., Vol. 10, pp. 1-46, 2020.
H.A. Foster, I.B. Ditta, S. Varghese, A. Steele, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity”, Appl. Microbiol. Biotechnol., Vol. 90, pp. 1847-1868, 2011.
G. Ferro, F. Guarino, S. Castiglione, L. Rizzo, “Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process”, Sci. Total. Environ., Vol. 560-561, pp. 29-35, 2016.
N.F.F. Moreira, C. Narciso-da-Rocha, M.I. Polo-López, L.M. Pastrana-Martínez, J.L. Faria, C.M. Manaia, P. Fernández-Ibañez, O.C. Nunes, A.M.T. Silva, “Solar treatment (H2O2, TiO2-P25 and GO-TiO2 photocatalysis, photo-Fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater”, Water. Res., Vol. 135, pp. 195-206, 2018.
I. Sánchez-Montes, I. Salmerón, J.M. Aquino, M.I. Polo-López, S. Malato, I. Oller, “Solar-driven free chlorine advanced oxidation process for simultaneous removal of microcontaminants and microorganisms in natural water at pilot-scale”, Chemosphere., Vol. 288, pp. 1-9, 2022.
M.B. Tahir, H. Kiran, T. Iqbal, “The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review”, Enviro. Sci. Pollut. Res., Vol. 26, pp. 10515-10528, 2019.
K. Siwińska-Stefańska, A. Kubiak, A. Piasecki, A. Dobrowolska, K. Czaczyk, M. Motylenko, D. Rafaja, H. Ehrlich, T. Jesionowski, “Hydrothermal synthesis of multifunctional TiO2-ZnO oxide systems with desired antibacterial and photocatalytic properties”, Appl. Surf. Sci., Vol. 463, pp. 791-801, 2019.
T. Li, Y, Xiao, D, Guo, L. Shen, R. Li, Y. Jiao, Y. Xu, H. Lin, “In-situ coating TiO2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance”, J. Colloid. Interface. Sci., Vol. 572, pp. 114-121, 2020.
R. Matsuura, C.W. Lo, S.Wada, J. Somei, H. Ochiai, T. Murakami, N. Saito, T. Ogawa, A. Shinjo, Y. Benno, M. Nakagawa, M. Takei, Y. Aida, “SARS-CoV-2 Disinfection of Air and Surface Contamination by TiO2 Photocatalyst-Mediated Damage to Viral Morphology, RNA, and Protein”, Viruses., Vol. 13, pp. 1-14, 2021.
J. Prakash, J. Cho, Y.K. Mishra, “Photocatalytic TiO2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the SARS-COV-2 spread Micro”. Nano. Eng., Vol. 14, pp. 1-16, 2022.
D. Wang, M.A. Mueses, J.A.C. Márquez, F. Machuca-Martínez, I. Grčić, R. Peralta Muniz Moreira, G. Li Puma G, “Engineering and modeling perspectives on photocatalytic reactors for water treatment”, Water. Res., Vol. 202, pp. 1-22, 2021.
S. Ofori, A. Puškáčová, I. Růžičková, J. Wanner, “Treated wastewater reuse for irrigation: Pros and cons”, Sci. Total. Env., Vol. 760, pp. 1-15, 2021.
E.W. Rice, L. Bridgewater, Association APH, Association AWW, Federation W E, “Standard Methods for the Examination of Water and Wastewater: American Public Health Association”, 2012.
R.B. Baird, A.D. Eaton, E.W. Rice, Eds, “Standard Methods for the Examination of Water and Wastewater” 23rd Edition, 2017.
J.J. Murcia, E.G. Ávila-Martínez, H. Rojas, J.A. Navío, M.C. Hidalgo, “Study of the E. coli elimination from urban wastewater over photocatalysts based on metallized TiO2”, Appl. Catal. B: Environ., Vol. 200, pp. 469-476, 2017.
J.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, “Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition”, Appl. Catal. B: Environ., Vol. 179, pp. 305-312, 2015.
J.J. M. M. Universidad Pedagógica y Tecnológica de Colombia, Wilson Gonzalez Cely, Hugo Alfonso Rojas Sarmiento, Jairo Antonio Cubillos Lobo, “Planta para el tratamiento de aguas residuales con función dual floculación/fotocatálisis impulsada por energía solar y un reactor de tubos soportado sobre una lámina inclinada. Colombia Patent” 37668, 2018.
Resolución 1207 – “Disposiciones relacionadas con el uso de aguas residuales tratadas”, M. d. A. y. D. S.-. Colombia (2014).
Resolución 631 – “Parámetros y valores límites permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público”, M. d. A. y. D. Sostenible (2015).
Russell SM, 20 - Rapid detection and enumeration of pathogens on poultry meat," in Food Safety Control in the Poultry Industry, G. C. Mead, Ed., ed: Woodhead Publishing, 2005, pp. 454-485.
M.W.C.C. Greenshields, B.B. Cunha, N.J. Coville, I.C. Pimentel, M.A.C. Zawadneak, S. Dobrovolski, M.T. Souza, I.A. Hummelgen, “Fungi Active Microbial Metabolism Detection of Rhizopus sp. and Aspergillus sp. Section Nigri on Strawberry Using a Set of Chemical Sensors Based on Carbon Nanostructures”, Chemosensors., Vol. 4, pp. 1-9, 2016.
E.R. Weiner, “Applications of Environmental Aquatic Chemistry: A Practical Guide”, Second Edition: CRC Press, 2008.
W. Boyles, “Chemical oxygen demand. Technical information series”, Booklet,(9), vol. 24, 1997.
M.R. Penn, J.J. Pauer, J.R. Mihelcic, “Biochemical oxygen demand”, Env. Eco. Chem., Vol. 2, pp. 278-297, 2009.
C.E. Cerniglia, M.A. Heitkamp, MA, “Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment in: Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment”, Vol. 38, pp. 41-68, 1989.
S.M. Ghoreishi, R. Haghighi R, “Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent”, Chem. Eng. J., Vol. 95, pp. 163-169, 2003.
H. Al-Tameemi, M. Jabbar, A. Bader, “BOD: COD Ratio as Indicator for Wastewater and Industrial Water Pollution”, 2022.
BIOMERK®HC. (2023). “Soluciones para el futuro sostenible”. Available: https://www.biomerk.co/
G. Kalayu, “Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers”, Int. J. Agron., Vol. 2019, pp. 1-8, 2019.
J.M. Tiedje, “Denitrification, in Methods of Soil Analysis”, ed, 1983, pp. 1011-1026.
G. Muyzer, A.J.M. Stams, “The ecology and biotechnology of sulphate-reducing bacteria”, Nat. Rev. Microbiol., Vol. 6, pp. 441-454, 2008.
Suzuki M and Chatterton NJ, “Chapter 5 - Science and Technology of Fructans”: Taylor & Francis, 1993.
B. Fath, S.E. Jorgensen, “Encyclopedia of Ecology”: Elsevier Science, 2014.
B. Jefferson, J.E. Burgess, A. Pichon, J. Harkness, S.J. Judd, “Nutrient addition to enhance biological treatment of greywater”, Water. Res., Vol. 35, pp. 2702-2710, 2001.
J.R. Paterson, M.S. Beecroft, R.S. Mulla, D. Osman, N.L. Reeder, J.A. Caserta, T.R. Young, A.C. Pettigrew, G.E. Davies, J.A.G. Williams, G.J. Sharples, “Insights into the Antibacterial Mechanism of Action of Chelating Agents by Selective Deprivation of Iron, Manganese, and Zinc”, Appl. Environ. Microbiol., Vol. 88, pp. 1-20, 2022.
D. Alrousan, A. Afkhami, K. Bani-Melhem, P. Dunlop, “Organic Degradation Potential of Real Greywater Using TiO2-Based Advanced Oxidation Processes”, Water., Vol. 12, pp. 1-18, 2020.
J. Gamage, McEvoy, Z. Zhang, “Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions”, J. Photochem. Photobiol. C: Photochem. Rev., Vol. 19, pp. 62-75, 2014.
J.J. Murcia, M. Hernández-Laverde, H. Rojas, E. Muñoz, J.A. Navío, M.C. Hidalgo, “Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries”, J. Photochem. Photobiol. A: Chem., Vol. 358, pp. 256-264, 2018.
J. Murcia, A. Cely, H. Rojas, M.C. Hidalgo, J. Navío, “Fluorinated and Platinized Titania as Effective Materials in the Photocatalytic Treatment of Dyestuffs and Stained Wastewater Coming from Handicrafts Factories”, Catalysts., Vol. 9, pp. 1-20, 2019.
J.J. Murcia Mesa, J.A. García Arias, H.A. Rojas Sarmiento, O.E. Cárdenas González, “Photocatalytic degradation of Phenol, Catechol and Hydroquinone over Au-ZnO nanomaterials”, Rev. Fac. de. Ing., Vol. 2020, pp. 24-32, 2019.
C. Castañeda, K. Gutiérrez, I. Alvarado, J.J. Martínez, H. Rojas, F. Tzompantzi, R. Gómez, “Effective phosphated CeO2 materials in the photocatalytic degradation of phenol under UV irradiation”, J. Chem. Technol. Biotechnol., Vol. 95, pp. 3213-3220, 2020.
C.B. Chidambara Raj, H. Li Quen, “Advanced oxidation processes for wastewater treatment: Optimization of UV/H2O2 process through a statistical technique”, Chem. Eng. Sci., Vol. 60, pp. 5305-5311, 2005.
F.L. Rosario-Ortiz, E.C. Wert, S.A. Snyder, “Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater”, Water. Res., Vol. 44, pp. 1440-1448, 2010.
J.J. Murcia, J.S. Hernández Niño, H. Rojas, M.H. Brijaldo, A.N. Martín-Gómez, P. Sánchez-Cid, J.A. Navío, M.C. Hidalgo, C. Jaramillo-Páez, “ZnO/Ag3PO4 and ZnO–Malachite as Effective Photocatalysts for the Removal of Enteropathogenic Bacteria, Dyestuffs, and Heavy Metals from Municipal and Industrial Wastewater”, Water., Vol. 13, pp. 1-15, 2021.
X. Gao, X. Meng, “Photocatalysis for Heavy Metal Treatment: A Review”, Processes., Vol. 9, pp. 1-12, 2021.
R.S. Thakur, R. Chaudhary, C. Singh, “Influence of pH on photocatalytic reduction, adsorption, and deposition of metal ions: speciation modeling”, Desalin. Water. Treat., Vol. 56, pp. 1335-1363, 2015.
T. Hirakawa, K. Yawata, Y. Nosaka, “Photocatalytic reactivity for O2●- and OH● radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Appl. Catal. A-Gen., Vol. 325, pp. 105-111, 2007.
Y. Nosaka, A. Nosaka A, “Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis”, ACS. Energy. Lett., Vol. 1, pp. 356-359, 2016.
M. Umar, H.A. Aziz, “Photocatalytic Degradation of Organic Pollutants in Water” 2013.
E. Ortega-Gómez, B. Esteban García, M.M. Ballesteros Martín, P. Fernández Ibáñez, J.A. Sánchez Pérez, “Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-Fenton at neutral pH”, Water. Res., Vol. 63, pp. 316-324, 2014.
D. Wang, Y. Li, W. Zhang, Q. Wang, P. Wang, C. Wang, “Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol”, Env. Sci. Pollut. Res., Vol. 20, pp. 2321-2329, 2013.
J.A. Lara-Ramos, G.D. Llanos-Diaz, J. Diaz-Angulo, F. Machuca-Martínez, “Evaluation of Caffeine Degradation by Sequential Coupling of TiO2/O3/H2O2/UV Processes”, Top. Catal., Vol. 63, pp. 1361-1373, 2020.
G.L. Puma, P.L. Yue, “A laminar falling film slurry photocatalytic reactor. Part II—experimental validation of the model”, Chem. Eng. Sci., Vol. 53, pp. 3007-3021, 1998.
G. Li Puma, “Modeling of Thin-Film Slurry Photocatalytic Reactors Affected by Radiation Scattering”, Env. Sci. Technol., Vol. 37, pp. 5783-5791, 2003.
M.A. Mueses, J. Colina-Márquez, F. Machuca-Martínez, G. Li Puma, “Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceuticals and emerging organic contaminants in water”, Curr. Opin. Green. Sustain. Chem., Vol. 30, pp. 1-7, 2021.
N.P. Cheremisinoff, “Environmental Technologies Handbook”: Government Institutes, 2005.
R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim, “Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications”, J. Env. Chem. Eng., Vol. 4, pp. 4143-4164, 2016.
S. Vilhunen, M. Vilve, M. Vepsäläinen, M. Sillanpää, “Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method”, J. Hazard. Mater., Vol. 179, pp. 776-782, 2010.
S. Malato, J. Blanco, A. Vidal, C. Richter, “Photocatalysis with solar energy at a pilot-plant scale: an overview”, Appl. Catal. B: Environ., Vol. 37, pp. 1-15, 2002.
S. Malato, P. Fernández-Ibáñez, M.I. Maldonado, J. Blanco, W. Gernjak, Maldonado MI, Blanco J and Gernjak W, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends”, Catal. Today., Vol. 147, pp. 1-59, 2009.
G. Carré, E. Hamon, S. Ennahar, M. Estner, M.C. Lett, P. Horvatovich, J.P. Gies, V. Keller, N. Keller, P. Andre, “TiO2 Photocatalysis Damages Lipids and Proteins in Escherichia coli”, Appl. Environ. Microbiol., Vol. 80, pp. 2573-2581, 2014.
X. Gao, Q. Guo, G. Tang, W. Peng, Y. Luo, D. He, “Effects of inorganic ions on the photocatalytic degradation of carbamazepine”, J. Water. Reuse. Desalin., Vol. 9, pp. 301-309, 2019.
L. Lin, W. Jiang, L. Chen, P. Xu, H. Wang, “Treatment of Produced Water with Photocatalysis: Recent Advances, Affecting Factors and Future Research Prospects”, Catalysts., Vol. 10, pp. 1-18, 2020.
M. Delarmelina, M.W. Dlamini, S. Pattisson, P.R. Davies PR, G.J. Hutchings, C.R.A. Catlow, “The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment”, Phys. Chem. Chem. Phys., Vol. 25, pp. 4161-4176, 2023.
W. Endang Tri, A. Nurul Hidayat, “Photoreduction Processes over TiO2 Photocatalyst”, in Photocatalysts, K. Sher Bahadar and A. Kalsoom, Eds., ed Rijeka: IntechOpen, p. Ch. 8, 2018.
X. Zhao, K. Drlica, “Reactive oxygen species and the bacterial response to lethal stress”, Curr. Opin. Microbiol., Vol. 21, pp. 1-6, 2014.
Y. Hong, J. Zeng, X. Wang, K. Drlica, X. Zhao, “Post-stress bacterial cell death mediated by reactive oxygen species”, Proc. Nat. Acad. Sci., Vol. 116, pp. 10064-10071, 2019.
K.T. Prep, MCAT General Chemistry Review 2023-2024: Online + Book: Kaplan Test Prep, 2022.
A. Fiorentino, B. Esteban, J.A. Garrido-Cardenas, K. Kowalska, L. Rizzo, A. Aguera, “Effect of solar photo-Fenton process in raceway pond reactors at neutral pH on antibiotic resistance determinants in secondary treated urban wastewater”, J. Hazard. Mat., Vol. 3, pp. 781-789, 2019.
A.K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, C. Guillard, “Photocatalytic inactivation of Escherischia coli: Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation”, Appl. Catal. B: Environ., Vol. 76, pp. 257-263, 2007.
G. Xiao, X. Zhang, W. Zhang, S. Zhang, H. Su, T. Tan, “Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of Ag-nanoparticles@chitosan–TiO2 organic–inorganic composites for water disinfection”, Appl. Catal. B: Environ., Vol. 170-171, pp. 255-262, 2015.
D.C.A. Gowland, N. Robertson, E. Chatzisymeon, “Photocatalytic Oxidation of Natural Organic Matter in Water”, Water., Vol. 13, pp. 1-21, 2021.
G. Huang, T.W. Ng, H. Chen, A.T. Chow, S. Liu, P.K. Wong, “Formation of assimilable organic carbon (AOC) during drinking water disinfection: A microbiological prospect of disinfection byproducts”, Environ. Int., Vol. 135, pp. 1-12, 2020.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Revista Facultad de Ingeniería Universidad de Antioquia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.