Eficacia de Tratamientos UV-VIS/H2O2/TiO2 y biológicos para la valorización de efluentes de un polígono industrial

Autores/as

  • Julie Joseane Murcia-Mesa Universidad Pedagógica y Tecnológica de Colombia UPT https://orcid.org/0000-0002-6237-9517
  • Mariana Alejandra Gil-Agudelo Universidad Pedagógica y Tecnológica de Colombia UPTC https://orcid.org/0000-0001-8423-9673
  • Jhon Sebastián Hernández-Niño Universidad Pedagógica y Tecnológica de Colombia UPTC
  • Claudia Patricia Castañeda-Martínez Universidad Pedagógica y Tecnológica de Colombia UPTC https://orcid.org/0000-0002-5360-2756

DOI:

https://doi.org/10.17533/udea.redin.20250365

Palabras clave:

Biological purification, UV-Vis/H2O2/TiO2, industrial wastewater, crops irrigation water

Resumen

En este estudio se evaluó un tratamiento biológico y algunas Tecnologías Avanzadas de Oxidación (TAOs) como TiO₂/UV-VIS, H₂O₂-UV-VIS and TiO₂/H₂O₂/UV-VIS en el tratamiento de aguas residuales industriales. Los experimentos se llevaron a cabo en reactor a escala de laboratorio y en una planta piloto con capacidad de 120 L/s con autonomía de operación bajo luz solar. La aplicación individual del tratamiento biológico usando un cultivo bacteriano comercial permitió obtener una disminución significativa en los hidrocarburos totales, sulfatos, TOC, dureza, alcalinidad, DBO5, DQO en la muestra de agua residual inicial. Se observó también que la aplicación de los tratamientos combinados UV-VIS/H₂O₂/TiO₂, resultó más efectiva que el tratamiento biológico o las TAOs individuales, llevando a disminuir parámetros como conductividad, cloruros, nitratos, turbidez, grasas y aceites, sólidos suspendidos totales, sólidos sedimentables, acidez, TOC, bacterias coliformes totales y a la remoción de metales pesados (Zn, Cu, Cr, Ni, Fe y Pb). Adicionalmente, el uso del tratamiento secuencial, aplicando inicialmente TAOs y a continuación el tratamiento biológico, llevó a mejorar la remoción de contaminantes como cloruros, metales pesados (Fe y Pb), nitratos y dureza. En general, los resultados sugieren que la combinación secuencial de TAOs y el tratamiento biológico es una estrategia efectiva para la recuperación de aguas residuales industriales, logrando una alta reducción de los contaminantes, comparada con la aplicación de cada tratamiento separado, mejorando así la calidad final del agua tratada.

|Resumen
= 232 veces | PDF (ENGLISH)
= 27 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Julie Joseane Murcia-Mesa, Universidad Pedagógica y Tecnológica de Colombia UPT

Grupo de Catálisis, Escuela de Ciencias Químicas

Mariana Alejandra Gil-Agudelo, Universidad Pedagógica y Tecnológica de Colombia UPTC

Grupo de Catálisis, Escuela de Ciencias Químicas

Jhon Sebastián Hernández-Niño, Universidad Pedagógica y Tecnológica de Colombia UPTC

Grupo Catálisis, Escuela de Ciencias Químicas

Claudia Patricia Castañeda-Martínez, Universidad Pedagógica y Tecnológica de Colombia UPTC

Grupo de Catálisis, Escuela de Ciencias Químicas

Citas

I. Michalak and K. Chojnacka, “Effluent biomonitoring,” in Encyclopedia of Toxicology (Third Edition), P. Wexler, Ed. Academic Press, Jan. 2014.

A. D. Patwardhan, Industrial Wastewater Treatment. Prentice Hall India Pvt. Limited, Jan. 2017. [Online]. Available: https://books.google.com.co/books?id=psf56CPmZsYC&printsec=copyright&redir_esc=y#v=onepage&q&f=false

M. Ashrafivala, S. B. Mousavi, S. Z. Heris, M. Heidari, M. Mohammadpourfard, and H. Aslani, “Investigation of h2o2/uv advanced oxidation process on the removal rate of coliforms from the industrial effluent: A pilot-scale study,” International Journal of Hydrogen Energy, vol. 47, no. 78.

D. A. da Silva, R. P. Cavalcante, E. B. Barbosa, A. M. Junior, S. C. de Oliveira, and R. F. Dantas, “Combined aop/gac/aop systems for secondary effluent polishing: Optimization, toxicity and disinfection,” Separation and Purification Technology, vol. 263, May. 2021. [Online]. Available: https://doi.org/10.1016/j.seppur.2021.118415

A. Di-Cesare, M. D. Carluccio, E. M. Eckert, D. Fontaneto, A. Fiorentino, G. Corno, and et al., “Combination of Flow cytometry and molecular analysis to monitor the effect of uvc/h2o2vsuvc/h2o2/cu − ids processes on pathogens and antibiotic-resistant genes in secondary wastewater effluents,”Water Research, vol. 184, Oct. 2020. [Online]. Available: https://doi.org/10.1016/j.watres.2020.116194

S. Naghash-Hamed, N. Arsalani, and S. B. Mousavi, “The catalytic reduction of nitroanilines using synthesized cufe2o4 nanoparticles in an aqueous medium,” ChemistryOpen, vol. 11.

S. Naghash-Hamed and N. Arsalani and S. B. Mousavi, “Facile copper ferrite/carbon quantum dot magnetic nanocomposite as an effective nanocatalyst for reduction of para-nitroaniline and ortho-nitroaniline,” Nanotechnology Futures, vol. 6.

L. Kumar, R. Bidlan, J. Sharma, and N. Bharadvaja, “Biotechnological management of water quality: A mini review,”Biosciences Biotechnology Research Communications, vol. 12, no. 1.

V. K. Gupta and I. Ali, “Wastewater treatment by biological methods,” in Environmental Water. Elsevier, Dec. 2013. [Online]. Available: https://doi.org/10.1016/B978-0-444-59399-3.00007-6

A. Patel, I. Delgado-Vellosillo, U. Rova, L. Matsakas, and P. Christakopoulos, “A novel bioprocess engineering approach to recycle hydrophilic and hydrophobic waste under high salinity conditions for the production of nutraceutical compounds,”Chemical Engineering Journal, vol. 431, no. 1.

K. B. Chipasa and K. Mędrzycka, “Behavior of lipids in biological wastewater treatment processes,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 8.

S. Ishak, A. Malakahmad, and M. H. Isa, “Refinery wastewater biological treatment: A short review,” Journal of Scientific and Industrial Research, vol. 71, Apr. 2012. [Online]. Available: https://tinyurl.com/5eydehnr

T. E. Doll and F. H. Frimmel, “Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water,”Catalysis Today, vol. 101, no. 3-4.

W. A. Freitas, B. E. Soares, M. S. Rodrigues, P. Trigueiro, L. M. C. Honorio, R. Peña-Garcia, and et al., Facile synthesis of zno-clay minerals composites using an ultrasonic approach for photocatalytic performance,”Journal of Photochemistry and Photobiology A: Chemistry, vol. 429, Aug. 2022. [Online]. Available:https://doi.org/10.1016/j.jphotochem.2022.113934

B. Zsirka, V. Vágvölgyi, E. Horváth, T. Juzsakova, O. Fónagy, E. Szabó-Bárdos, and J. Kristóf, “Halloysite-zinc oxide nanocomposites as potential photocatalysts,” Minerals, vol. 12, no. 4.

P. Bhatt, A. Verma, S. Gangola, G. Bhandari, and S. Chen, “Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications,” Microbial Cell Factories, vol. 20,no. 72.

A. Alvarez, J. M. Saez, J. S. D. Costa, V. L. Colin, M. S. Fuentes, S. A. Cuozzo, and et al., “Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals,” Chemosphere, vol. 166, Jan. 2017. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2016.09.070

D. Bhatia, N. Sharma, J. Singh, and R. Kanwar, “Biological methods for textile dye removal from wastewater: A review,” Critical Reviews in Environmental Science and Technology, vol. 47, no. 19.

S. Mishra, Z. Lin, S. Pang, W. Zhang, P. Bhatt, and S. Chen, “Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities,” Frontiers in Bioengineering and Biotechnology, vol. 9, Jul. 2021. [Online]. Available: https://doi.org/10.3389/fbioe.2021.632059

M. Megharaj and R. Naidu, “Soil and brownfield bioremediation,”Microbial Biotechnology, vol. 10, no. 5.

P. Davies, The Biological Basis of Wastewater Treatment. IWA Publishing, Jan. 2005.

F. Sadeghfar, M. Ghaedi, and Z. Zalipour, “Chapter 4 – advanced oxidation,” Interface Science and Technology, vol. 32, Mar. 2021. [Online]. Available: https://doi.org/10.1016/B978-0-12-818806-4.00001-2

M. B. Ray, J. P. Chen, L. K. Wang, and S. O. Pehkonen, “Advanced oxidation processes,” 2006, vol. 4. [Online]. Available: https://doi.org/10.1007/978-1-59745-029-4_14

R. Mittler, “Ros are good,” Trends in Plant Science, vol. 22, no. 1.

H. Li, X. Zhou, Y. Huang, B. Liao, L. Cheng, and B. Ren, “Reactive oxygen species in pathogen clearance: The killing mechanisms, the adaption response, and the side effects,” National Library of Medicine, vol. 11, no. 4.

J. Murcia, J. Hernández, H. Rojas, J. Moreno-Cascante, P. Sánchez-Cid, M. Hidalgo, and et al., “Evaluation of auzno, zno/ag2co3andagtio2 as photocatalyst for wastewater treatment,” Topics in Catalysis, vol. 63, Feb. 2020. [Online]. Available: https://doi.org/10.1007/s11244-020-01232-z

I. D. Pasquale, C. L. Porto, M. Dell’Edera, F. Petronella, A. Agostiano, M. L. Curri, and R. Comparelli, “Photocatalytic tio2-based nanostructured materials for microbial inactivation,”Catalysts, vol. 10, Nov. 2020. [Online]. Available: https://doi.org/10.3390/catal10121382

H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity,” Applied Microbiology and Biotechnology, vol. 90, no. 6.

G. Ferro, F. Guarino, S. Castiglione, and L. Rizzo, “Antibiotic resistance spread potential in urban wastewater effluents disinfected by uv/h2o2 process,” Science of the Total Environment, vol. 560-561, Sep. 2016. [Online]. Available: https://doi.org/10.1016/j.scitotenv.2016.04.047

N. F. F. Moreira, C. N. da Rocha, M. I. Polo-López, L. M. Pastrana-Martínez, J. L. Faria, C. M. Manaia, and et al., “Solar treatment (h2o2, tio2 − p25andgo − tio2 photocatalysis, photo-fenton) of organic micropollutants, human pathogen indicators, antibiotic resistant bacteria and related genes in urban wastewater,” Water Research, vol. 135, May. 2018. [Online]. Available: https://doi.org/10.1016/j.watres.2018.01.064

I. Sánchez-Montes, I. Salmerón, J. M. Aquino, M. I. Polo-López, S. Malato, and I. Oller, “Solar-driven free chlorine advanced oxidation process for simultaneous removal of microcontaminants and microorganisms in natural water at pilot-scale,” Chemosphere, vol. 288, Feb. 2022. [Online]. Available: https://doi.org/10.1016/j.chemosphere.2021.132493

M. B. Tahir, H. Kiran, and T. Iqbal, “The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review,” Environmental Science and Pollution Research, vol. 26, Mar. 2019. [Online]. Available: https://doi.org/10.1007/s11356-019-04547-x

K. Siwińska-Stefańska, A. Kubiak, A. Piasecki, A. Dobrowolska, K. Czaczyk, and M. M. and et al., “Hydrothermal synthesis of multifunctional tio2−zno oxide systems with desired antibacterial and photocatalytic properties,” Applied Surface Science, vol. 463, Jan. 2019. [Online]. Available: https://doi.org/10.1016/j.apsusc.2018.08.256

T. Li, Y. Xiao, D. Guo, L. Shen, R. Li, Y. Jiao, and et al., “In-situ coating tio2 surface by plant-inspired tannic acid for fabrication of thin film nanocomposite nanofiltration membranes toward enhanced separation and antibacterial performance,” Journal of Colloid and Interface Science, vol. 572, Jul. 2020. [Online]. Available: https://doi.org/10.1016/j.jcis.2020.03.087

R. Matsuura, C. W. Lo, S. Wada, J. Somei, H. Ochiai, T. Murakami, and et al., “Sars-cov-2 disinfection of air and surface contamination by tio2 photocatalyst-mediated damage to viral morphology, rna, and protein,” Viruses, vol. 13, no. 5.

J. Prakash, J. Cho, and Y. K. Mishra, “Photocatalytic tio2 nanomaterials as potential antimicrobial and antiviral agents: Scope against blocking the sars-cov-2 spread,” Micro and Nano Engineering, vol. 14, Apr. 2022. [Online]. Available: https://doi.org/10.1016/j.mne.2021.100100

O. Salishcheva, A. Burlachenko, Y. Tarasova, N. Moldagulova, and V. Yustratov, “Biodegradation of organic compounds in wastewater,” BIO Web of Conferences, Kemerovo, Russian Federation, 2023. [Online]. Available: https://doi.org/10.1051/bioconf/20236401003

J. Yarce-Castaño, G. Serrano-Arguello, F. M. Chavarría-Chavarría, F. Granda-Ramírez, and G. Hincapié-Mejía, “Study of the effect of radiation intensity and h2o2 concentration in the treatment of effluent from the textile industry with uv/h2o2,” Ingeniería y Competitividad, vol. 24, no. 1, Oct. 2022. [Online]. Available:https://doi.org/10.25100/iyc.24i1.11308

J. S. Hernández-Niño, J. J. Murcia-Mesa, H. A. Rojas-Sarmiento, M. del C. Hidalgo, and J. A. Navío-Santos, “zno/tio2yzno/nb2o5 como sistemas eficientes en el tratamiento de bacterias entéricas y colorantes comerciales,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 108, Jul. 2023. [Online]. Available: https://doi.org/10.17533/udea.redin.20220785

D. B. Moreno, N. Y. C. Cáceres, C. M. V. Lázaro, F. M. Martínez, and J. W. S. Verjel, “Fotocatálisis heterogénea y un proceso biológico anaerobio para el tratamiento de lixiviados,” Ciencia en Desarrollo, vol. 13, no. 2, Jul. 2022. [Online]. Available: https://repositorio.uptc.edu.co/handle/001/15337

A. D. Ortiz-Marin, C. A. Díaz-Angulo, J. A. Martínez-Moreno, J. W. Soto-Verjel, and F. Machuca-Martínez, “Using sequentially coupled uv/h2o2-biologic systems to treat industrial wastewater with high carbon and nitrogen contents,” Process Safety and Environmental Protection, vol. 137, May. 2020. [Online]. Available: https://doi.org/10.1016/j.psep.2020.02.020

D. Wang, M. A. Mueses, J. A. C. Márquez, F. Machuca-Martínez, I. Grčić, R. Peralta-Muniz-Moreira, and G. L. Puma, “Engineering and modeling perspectives on photocatalytic processes for wastewater treatment,” Water Research, vol. 202, Feb. 2021. [Online]. Available: https://doi.org/10.1016/j.watres.2021.117421

S. Ofori, A. Puškáčová, I. Růžičková, and J. Wanner, “Treated wastewater reuse for irrigation: Pros and cons,” Science of The Total Environment, vol. 760, Mar. 2021. [Online]. Available:https://doi.org/10.1016/j.scitotenv.2020.144026

no encontrada R. B. Baird, A. D. Eaton, and E. W. Rice, Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017.

J. J. Murcia, E. G. Ávila Martínez, H. Rojas, J. A. Navío, and M. C. Hidalgo, “Study of the e. coli elimination from urban wastewater over photocatalysts based on metallized tio2,” Applied Catalysis B: Environmental, vol. 200, Jan. 2017. [Online]. Available: https://doi.org/10.1016/j.apcatb.2016.07.045

J. J. Murcia, M. C. Hidalgo, J. A. Navío, J. Araña, and J. M. Doña-Rodríguez, “Study of the phenol photocatalytic degradation over tio2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition,” Applied Catalysis B: Environmental, vol. 179, Dec. 2015. [Online]. Available: https://doi.org/10.1016/j.apcatb.2015.05.040

J. J.Murcia-Mesa, W. González-Cely, H. A. Rojas-Sarmiento, and J. A. Cubillos-Lobo, “Planta para el tratamiento de aguas residuales con función dual floculación/fotocatálisis impulsada por energía solar y un reactor de tubos soportado sobre una lámina inclinada,” Colombia Patent NC2018/0 013 099, Sep. 11, 2020.

(2014, Jul.) Resolución 1207 – disposiciones relacionadas con el uso de aguas residuales tratadas. Ministerio de Ambiente y Desarrollo Sostenible. [Online]. Available: https://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=59135

(2015, Mar.) Resolución 631 – parámetros y valores límites permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público. Ministerio de Ambiente y Desarrollo Sostenible. [Online]. Available: https://www.minambiente.gov.co/wp-content/uploads/2021/11/resolucion-631-de-2015.pdf

S. M. Russell, “Rapid detection and enumeration of pathogens on poultry meat,” in Food Safety Control in the Poultry Industry, G. C. Mead, Ed. Woodhead Publishing, 2005.

M. W. C. C. Greenshields, B. B. Cunha, N. J. Coville, I. C. Pimentel, M. A. C. Zawadneak, S. Dobrovolski, M. T. Souza, and I. A. Hummelgen, “Fungi active microbial metabolism detection of rhizopus sp. and aspergillus sp. section nigri on strawberry using a set of chemical sensors based on carbon nanostructures,”Chemosensors, vol. 4, no. 3, Dec. 2016. [Online]. Available:https://doi.org/10.3390/chemosensors4030019

E. R. Weiner, Applications of Environmental Aquatic Chemistry: A Practical Guide, 2nd ed. CRC Press, 2008.

W. Boyles, Chemical oxygen demand. Technical information series. Hach Company, 1997.

J. M. M.R. Penn, J.J. Pauer, “Biochemical oxygen demand,” in Environmental and Ecological Chemistry, 2009, vol. 2. [Online]. Available: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.eolss.net/ebooklib/ebookcontents/e6-13-themecontents.pdf

U. Varanasi, Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Environmental Ecological Toxicology, Aug. 1989, vol. 1. [Online]. Available: https://doi.org/10.1201/9781003574897

S. M. Ghoreishi and R. Haghighi, “Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent,” Chemical Engineering Journal, vol. 95, no. 1-3, Aug.2003. [Online]. Available: https://doi.org/10.1016/S1385-8947(03)00100-1

H. Al-Tameemi, M. Jabbar, and A. Bader, “Bod: Cod ratio as indicator for wastewater and industrial water pollution,”International Journal of Special Education, vol. 37, no. 3.

Biomerk. (2023) Soluciones para el futuro sostenible. [Online]. Available: https://www.biomerk.co/

G. Kalayu, “Phosphate solubilizing microorganisms: Promising approach as biofertilizers,” International Journal of Agronomy, Jan. 2019. [Online]. Available: https://doi.org/10.1155/2019/4917256

J. M. Tiedje, “Denitrification,” in Methods of Soil Analysis, 1982. [Online]. Available: https://doi.org/10.2134/agronmonogr9.2.2ed.c47

G. Muyzer and A. J. M. Stams, “The ecology and biotechnology of sulphate-reducing bacteria,” Nature Reviews Microbiology, vol. 6, May. 2008. [Online]. Available: https://doi.org/10.1038/nrmicro1892

M. Suzuki and N. J. Chatterton, Science and Technology of Fructans, Chapter 5. Taylor and Francis, 1993.

B. Fath and S. E. Jorgensen, Encyclopedia of Ecology. Elsevier Science, 2014.

B. Jefferson, J. E. Burgess, A. Pichon, J. Harkness, and S. J. Judd, “Nutrient addition to enhance biological treatment of greywater,”Water Research, vol. 35, no. 11.

J. R. Paterson, M. S. Beecroft, R. S. Mulla, D. Osman, N. L. Reeder, J. A. Caserta, and et al., “Insights into the antibacterial mechanism of action of chelating agents by selective deprivation of iron, manganese, and zinc,” Applied and Environmental Microbiology, vol. 88, no. 2, Dec. 2022. [Online]. Available: https://doi.org/10.1128/AEM.01641-21

D. Alrousan, A. Afkhami, K. Bani-Melhem, and P. Dunlop, “Organic degradation potential of real greywater using.”

J. Gamage-McEvoy and Z. Zhang, “Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 19, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j.jphotochemrev.2014.01.001

J. J. Murcia, M. Hernández-Laverde, H. Rojas, E. Muñoz, J. A. Navío, and M. C. Hidalgo, “Study of the effectiveness of the flocculation-photocatalysis in the treatment of wastewater coming from dairy industries,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 358, May. 2018. [Online]. Available: https:

//doi.org/10.1016/j.jphotochem.2018.03.034

J. Murcia, A. Cely, H. Rojas, M. C. Hidalgo, and J. Navío, “Fluorinated and platinized titania as effective materials in the photocatalytic treatment of dyestuffs and stained wastewater coming from handicrafts factories,” Catalysts, vol. 9, no. 2, Apr. 2019. [Online]. Available: https://doi.org/10.3390/catal9020179

J. J. M. Mesa, J. A. G. Arias, H. A. R. Sarmiento, and O. E. C. González, “Photocatalytic degradation of phenol, catechol and hydroquinone over au-zno nanomaterials,” Revista Facultad de Ingeniería de la universidad de Antioquia, vol. 94, Jul-Ser. 2019. [Online]. Available: https://doi.org/10.17533/udea.redin.20190513

C. Castañeda, K. Gutiérrez, I. Alvarado, J. J. Martínez, H. Rojas, F. Tzompantzi, and R. Gómez, “Effective phosphated ceo2 materials in the photocatalytic degradation of phenol under uv irradiation,”

Journal of Chemical Technology and Biotechnology, vol. 95, no. 12, Nov. 2020. [Online]. Available: https://doi.org/10.1002/jctb.6499

C. B. C. Raj and H. L. Quen, “Advanced oxidation processes for wastewater treatment: Optimization of uv/h2o2 process through a statistical technique,” Chemical Engineering Science, vol. 60, no. 19, Nov. 2005. [Online]. Available: https://doi.org/10.1016/j.ces.2005.03.065

F. L. Rosario-Ortiz, E. C. Wert, and S. A. Snyder, “Evaluation of uv/h2o2 treatment for the oxidation of pharmaceuticals in wastewater,” Water Research, vol. 44, no. 5, Mar. 2010. [Online].

Available: https://doi.org/10.1016/j.watres.2009.10.031

J. J. Murcia, J. S. Hernández-Niño, H. Rojas, M. H. Brijaldo, A. N. Martín-Gómez, P. Sánchez-Cid, and et al., “zno/ag3po4 and zno–malachite as effective photocatalysts for the removal of enteropathogenic bacteria, dyestuffs, and heavy metals from municipal and industrial wastewater,” Water, vol. 13, no. 16, Jan.

[Online]. Available: https://doi.org/10.3390/w13162264

X. Gao and X. Meng, “Photocatalysis for heavy metal treatment: A review,” Processes, vol. 9, no. 10, Mar. 2021. [Online]. Available: https://doi.org/10.3390/pr9101729

R. S. Thakur, R. Chaudhary, and C. Singh, “Influence of ph on photocatalytic reduction, adsorption, and deposition of metal ions: Speciation modeling,” Desalination and Water Treatment, vol. 56, no. 5, Jul. 2015. [Online]. Available: https://doi.org/10.1080/19443994.2014.944222

T. Hirakawa, K. Yawata, and Y. Nosaka, “Photocatalytic reactivity for o2− and oh• radical formation in anatase and rutile tio2 suspension as the effect of h2o2 addition,” Applied Catalysis A: General, vol. 325, no. 1, Aug. 2007. [Online]. Available: https://doi.org/10.1016/j.apcata.2007.03.015

Y. Nosaka and A. Nosaka, “Understanding hydroxyl radical (•oh) generation processes in photocatalysis,” ACS Energy Letters, vol. 1, no. 2, Jul. 2016. [Online]. Available: https://doi.org/10.1021/acsenergylett.6b00174

M. Umar and H. A. Aziz, “Photocatalytic degradation of organic pollutants in water: A review,” Journal of Water Process Engineering, vol. 2, Apr. 2014. [Online]. Available: https://dx.doi.org/10.5772/53699

E. Ortega-Gómez, B. Esteban-García, M. M. Ballesteros-Martín, P. Fernández-Ibáñez, and J. A. Sánchez-Pérez, “Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-fenton at neutral ph,” Water Research, vol. 63, Mar. 2014. [Online]. Available: https://doi.org/10.1016/j.watres.2014.05.034

D. Wang, Y. Li, W. Zhang, Q. Wang, P. Wang, and C. Wang, “Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol,” Environmental Science and Pollution Research, vol. 20, Mar. 2012. [Online]. Available: https://doi.org/10.1007/s11356-012-1131-2

J. A. Lara-Ramos, G. D. Llanos-Díaz, J. Diaz-Angulo, and F. Machuca-Martínez, “Evaluation of caffeine degradation by sequential coupling of tio2/o3/h2o2/uv processes,” Topics in Catalysis, vol. 63, Jul. 2020. [Online]. Available: https://doi.org/10.1007/s11244-020-01316-w

G. L. Puma and P. L. Yue, “A laminar falling film slurry photocatalytic reactor. part ii—experimental validation of the model,” Chemical Engineering Science, vol. 53, no. 24, Aug. 1998. [Online]. Available: https://doi.org/10.1016/S0009-2509(98)00119-5

G. L. Puma, “Modeling of thin-film slurry photocatalytic reactors affected by radiation scattering,” Environmental Science and Technology, vol. 37, no. 24, Nov. 2003. [Online]. Available: https://doi.org/10.1021/es0300362

M. A. Mueses, J. Colina-Márquez, F. Machuca-Martínez, and G. L. Puma, “Recent advances on modeling of solar heterogeneous photocatalytic reactors applied for degradation of pharmaceuticals and emerging organic contaminants in water,” Current Opinion in Green and Sustainable Chemistry, vol. 30, Aug. 2021. [Online]. Available: https://doi.org/10.1016/j.cogsc.2021.100486

N. P. Cheremisinoff, Environmental Technologies Handbook. Government Institutes, Jan. 2005.

R. Ahmad, Z. Ahmad, A. U. Khan, N. R. Mastoi, M. Aslam, and J. Kim, “Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications,” Journal of Environmental Chemical Engineering, vol. 4, no. 4, Dec. 2016. [Online]. Available: https://doi.org/10.1016/j.jece.2016.09.009

S. Vilhunen, M. Vilve, M. Vepsäläinen, and M. Sillanpää, “Removal of organic matter from a variety of water matrices by uv photolysis and uv/h2o2 method,” Journal of Hazardous Materials, vol. 179, no. 1-3, May. 2010. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2010.03.070

S. Malato, J. Blanco, A. Vidal, and C. Richter, “Photocatalysis with solar energy at a pilot-plant scale: An overview,” Applied Catalysis B: Environmental, vol. 37, no. 1, Apr. 2002. [Online]. Available:https://doi.org/10.1016/S0926-3373(01)00315-0

S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J. Blanco, and W. Gernjak, “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catalysis Today, vol. 147, no. 1, Jul. 2009. [Online]. Available: https://doi.org/10.1016/j.cattod.2009.06.018

G. Carré, E. Hamon, S. Ennahar, M. Estner, M. C. Lett, P. Horvatovich, and et al., “tio2 photocatalysis damages lipids and proteins in escherichia coli,” Applied and Environmental Microbiology, vol. 80, no. 8, Apr. 2014. [Online]. Available: https://doi.org/10.1128/AEM.03995-13

X. Gao, Q. Guo, G. Tang, W. Peng, Y. Luo, and D. He, “Effects of inorganic ions on the photocatalytic degradation of carbamazepine,” Journal of Water Reuse and Desalination, vol. 9, no. 3, Sep. 2019. [Online]. Available: https://doi.org/10.2166/wrd.2019.001

L. Lin, W. Jiang, L. Chen, P. Xu, and H. Wang, “Treatment of produced water with photocatalysis: Recent advances, affecting factors and future research prospects,” Catalysts, vol. 10, no. 8, Jan. 2020. [Online]. Available: https://doi.org/10.3390/catal10080924

M. Delarmelina, M. W. Dlamini, S. Pattisson, P. R. Davies, G. J. Hutchings, and C. R. A. Catlow, “The effect of dissolved chlorides on the photocatalytic degradation properties of titania in wastewater treatment,” Physical Chemistry Chemical Physics, vol. 25, Feb. 2023. [Online]. Available: https://doi.org/10.1039/D2CP03140J

W. Endang-Tri and A. Nurul-Hidayat, “Photoreduction processes over tio2 photocatalyst,” in Photocatalysts, K. S. Bahadar and A. Kalsoom, Eds. IntechOpen, Nov. 2018. [Online]. Available:https://dx.doi.org/10.5772/intechopen.80914

X. Zhao and K. Drlica, “Reactive oxygen species and the bacterial response to lethal stress,” Current Opinion in Microbiology, vol. 21, Oct. 2014. [Online]. Available: https://doi.org/10.1016/j.mib.2014.06.008

Y. Hong, J. Zeng, X. Wang, K. Drlica, and X. Zhao, “Post-stress bacterial cell death mediated by reactive oxygen species,” Proceedings of the National Academy of Sciences, vol. 116, no. 20, May. 2019. [Online]. Available: https://doi.org/10.1073/pnas.1901730116

K. T. Prep, MCAT General Chemistry Review 2023-2024. Kaplan Publishing, Jul. 2022.

A. Fiorentino, B. Esteban, J. A. Garrido-Cardenas, K. Kowalska, L. Rizzo, A. Aguera, and et al., “Effect of solar photo-fenton process in raceway pond reactors at neutral ph on antibiotic resistance determinants in secondary treated urban wastewater,” Journal of Hazardous Materials, vol. 378, Oct. 2019. [Online]. Available: https://doi.org/10.1016/j.jhazmat.2019.120979

A. K. Benabbou, Z. Derriche, C. Felix, P. Lejeune, and C. Guillard, “Photocatalytic inactivation of Escherichia coli: Effect of concentration of tio2 and microorganism, nature, and intensity of uv irradiation,” Applied Catalysis B:Environmental, vol. 76, no. 3-4, Sep. 2007. [Online]. Available:https://doi.org/10.1016/j.apcatb.2007.05.026

G. Xiao, X. Zhang, W. Zhang, S. Zhang, H. Su, and T. Tan, “Visible-light-mediated synergistic photocatalytic antimicrobial effects and mechanism of ag-nanoparticles@chitosan–tio2 organic–inorganic composites for water disinfection,” Applied Catalysis B: Environmental, vol. 170-171, Jul. 2015. [Online].Available: https://doi.org/10.1016/j.apcatb.2015.01.042

D. C. A. Gowland, N. Robertson, and E. Chatzisymeon, “Photocatalytic oxidation of natural organic matter in water,”Water, vol. 13, no. 3. [Online]. Available: https://doi.org/10.3390/w13030288

G. Huang, T. W. Ng, H. Chen, A. T. Chow, S. Liu, and P. K. Wong, “Formation of assimilable organic carbon (aoc) during drinking water disinfection: A microbiological prospect of disinfection byproducts,” Environment International, vol. 135, Feb. 2020. [Online]. Available: https://doi.org/10.1016/j.envint.2019.105389

Descargas

Publicado

2025-03-14

Cómo citar

Murcia-Mesa, J. J., Gil-Agudelo, M. A., Hernández-Niño, J. S., & Castañeda-Martínez, C. P. (2025). Eficacia de Tratamientos UV-VIS/H2O2/TiO2 y biológicos para la valorización de efluentes de un polígono industrial. Revista Facultad De Ingeniería Universidad De Antioquia, (118), e50365. https://doi.org/10.17533/udea.redin.20250365

Número

Sección

Artículo de investigación

Artículos más leídos del mismo autor/a