Estudio de la actividad de los fotocatalizadores Pt and Au-TiO2 en la degradación de contaminantes orgánicos bajo luz visible
DOI:
https://doi.org/10.17533/udea.redin.n83a03Palabras clave:
Pt-S-TiO2, Au-S-TiO2, UV-Visible, luz visible, degradación de contaminantesResumen
Los fotocatalizadores Pt-TiO2 y Au-TiO2 se prepararon por fotodeposición del metal noble sobre el TiO2 sulfatado. Se encontró que las propiedades ópticas, el estado de oxidación y el tamaño de partícula de las especies metálicas (Pt o Au) juegan un papel fundamental en la actividad fotocatalítica del TiO2 bajo luz visible. La actividad fotocatalítica del TiO2 en la degradación de fenol y naranja de metilo aumentó significativamente a través de los tratamientos de sulfatación y metalización de este óxido. La más alta velocidad de degradación bajo luz UV-Visible y visible, se alcanzó usando el fotocatalizador Pt-S-TiO2; esto se debe principalmente a la modificación de las propiedades ópticas del TiO2 inducidas por la platinización, también a la buena distribución y al pequeño tamaño de las partículas de Pt. Se encontró, además, que este catalizador presenta una buena estabilidad después de dos ciclos de reacción en la degradación de fenol bajo luz UV-Visible. El fotocatalizador Pt-S-TiO2 fue activo también bajo luz solar directa y bajo las condiciones medioambientales de la ciudad de Tunja (Boyacá), Colombia.
Descargas
Citas
M. Pelaez et al., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B., vol. 125, pp. 331– 349, 2012.
S. Malato, P. Fernández, M. I. Maldonado, J. Blanco, and W. Gernjak., “Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends,” Catal. Today., vol. 147, no. 1, pp. 1–59, 2009.
S. G. Kumar and L. G. Devi, “Review on Modified TiO2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics,” J. Phys. Chem. A., vol. 115, no. 46, pp. 13211–13241, 2011.
T. Fotiou, T. M. Triantis, T. Kaloudis, and A. Hiskia, “Evaluation of the photocatalytic activity of TiO2 based catalysts for the degradation and mineralization of cyanobacterial toxins and water off-odor compounds under UV-A, solar and visible light,” Chem. Eng. J., vol. 261, pp. 17–26, 2015.
S. Rehman, R. Ullah, A. M. Butt, and N. D. Gohar, “Strategies of making TiO2 and ZnO visible light active,” J. Hazard. Mater., vol. 170, no. 2-3, pp. 560–569, 2009.
A. A. Ashkarran, H. Hamidinezhad, H. Haddadi, and M. Mahmoudid, “Double-doped TiO2 nanoparticles as an efficient visible-light-activephotocatalyst and antibacterial agent under solar simulated light,” Appl. Surf. Sci., vol. 301, pp. 338–345, 2014.
S. H. Hsieh, W. J. Chen, and C. T. Wu, “Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light,” Appl. Surf. Sci., vol. 340, pp. 9–17, 2015.
S. Neubert et al., “Surface-Modified TiO2 Photocatalysts Prepared by a Photosynthetic Route: Mechanism, Enhancement, and Limits,” ChemPlusChem., vol. 79, no. 1, pp. 163–170, 2014.
J. J. Murcia, M. C. Hidalgo, J. A. Navío, J. Araña, and J. M. Doña, “Correlation study between photo-degradation and surface adsorption properties of phenol and methyl orange on TiO2 Vs platinum-supported TiO2,” Appl. Catal. B., vol. 150–151, pp. 107–115, 2014.
M. Maicu, M.C. Hidalgo, G. Colón and J.A. Navío, “Comparative study of the photodeposition of Pt, Au and Pd on pre-sulphated TiO2 for the photocatalytic decomposition of phenol,” J. Photochem. Photobiol. A., vol. 217, pp. 275-283, 2011.
N. M. Thuy, D. Q. Van, and L. T. Hong, “The Visible Light Activity of the TiO2 and TiO2:V4+ Photocatalyst,” Nanomater. Nanotechnol., vol. 2, pp. 1–8, 2012.
S. W. Verbruggen et al., “Plasmonic gold–silver alloy on TiO2 photocatalysts with tunable visible light activity,” Appl. Catal. B., vol. 156–157, pp. 116–121, 2014.
A. Golabiewska et al., “Visible light photoactivity of TiO2 loaded with monometallic (Au or Pt) and bimetallic (Au/Pt) nanoparticles,” Appl. Surf. Sci., vol. 317, pp. 1131–1142, 2014.
N. Lakshminarasimhan, A. D. Bokare, and W. Choi, “Effect of Agglomerated State in Mesoporous TiO2 on the Morphology of Photodeposited Pt and Photocatalytic Activity,” J. Phys. Chem. C., vol. 116, no. 33, pp. 17531–17539, 2012.
S. Semlali et al., “Mesoporous Pt-TiO2 thin films: Photocatalytic efficiency under UV and visible light,” Appl. Catal. B., vol. 150–151, pp. 656– 662, 2014.
K. Okazaki, Y. Morikawa, S. Tanaka, K. Tanaka, and M. Kohyama, “Effects of stoichiometry on electronic states of Au and Pt supported on TiO2 (110),” J. Mater. Sci., vol. 40, no. 12, pp. 3075–3080, 2005.
L. C. Chen, F. R. Tsai, and C. M. Huang, “Photocatalytic decolorization of methyl orange in aqueous medium of TiO2 and Ag–TiO2 immobilized on γ-Al2O3,” J. Photochem. Photobiol. A., vol. 170, no. 1, pp. 7–14, 2005.
Z. Zheng et al., “Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol,” J. Mater. Chem., vol. 21, no. 25, pp. 9079–9087, 2011.
B. Wang et al., “Fabrication and enhanced visible-light photocatalytic activity of Pt-deposited TiO2 hollow nanospheres,” Chem. Eng. J. vol. 223, pp. 592–603, 2013.
Y. Ishibai, J. Sato, T. Nishikawa, and S. Miyagishi, “Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity,” Appl. Catal. B., vol. 79, no. 2, pp. 117–121, 2008.
W. Macyk and H. Kisch, “Photosensitization of Crystalline and Amorphous Titanium Dioxide by Platinum(IV) Chloride Surface Complexes,” Chem. Eur. J., vol. 7, no. 9, pp. 1862–1867, 2001.
R. Palmans and A. J. Frank, “A molecular water-reduction catalyst: surface derivatization of titania colloids and suspensions with a platinum complex,” J. Phys. Chem., vol. 95, no. 23, pp. 9438–9443, 1991.
J. Ma, H. Wu, Y. Liu, and H. He, “Photocatalytic Removal of NOx over Visible Light Responsive Oxygen-Deficient TiO2,” J. Phys. Chem. C., vol. 118, no. 14, pp. 7434-7441, 2014.
I. Nakamura et al., “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” J. Mol. Catal. A: Chem., vol. 161, no. 1-2, pp. 205–212, 2000.
T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, and S. Sugihara, “Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping,” Appl. Catal. B. vol. 42, no. 4, pp. 403–409, 2003.
A. A. Ismail and D. W. Bahnemann, “Mesostructured Pt/TiO2 Nanocomposites as Highly Active Photocatalysts for the Photooxidation of Dichloroacetic Acid,” J. Phys. Chem. C., vol. 115, no. 13, pp. 5784–5791, 2011.
S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater., vol. 10, no. 12, pp. 911–921, 2011.
N. Pugazhenthiran, S. Murugesan, P. Sathishkumar, and S. Anandan, “Photocatalytic degradation of ceftiofur sodium in the presence of gold nanoparticles loaded TiO2 under UV–visible light,” Chem. Eng. J., vol. 241, pp. 401–409, 2014.
E. Grabowska, J. Reszczynska, and A. Zaleska, “Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review,” Water Res., vol. 46, no. 17, pp. 5453 – 5471, 2012.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.