SOFCEV: Reducción de LCC y VPN basada en ahorros en fijación de carbono por plantaciones
DOI:
https://doi.org/10.17533/udea.redin.20210952Palabras clave:
Costo del ciclo de vida, créditos de carbono, vehículo eléctrico de celda de combustible de óxido sólido, emisiones de dióxido de carbono, etanol de caña de azúcarResumen
La tarificación del carbono es un método rentable para mitigar los impactos climáticos. Este artículo examina el costo del ciclo de vida convencional (LCC), el valor actual neto (NPV) y las emisiones de dióxido de carbono (CO2) del vehículo eléctrico de celda de combustible de óxido sólido (SOFCEV). Se evaluó el potencial de reducción de costos del SOFCEV, considerando la productividad brasileña de caña de azúcar y la fijación de carbono por estas plantaciones, mediante el mecanismo de venta de créditos de carbono. Se delinearon tres escenarios: a) Costo de inversión, producción de combustible, mantenimiento y operación del vehículo en USD/km, en un período de amortización de 10 años; b) Costo de emisión producida en el SOFCEV desde el pozo a la rueda agregado al coste de (a); c) Costo del carbono fijado por hectáreas de caña de azúcar necesario para abastecer el SOFCEV restado de (b). El SOFCEV alimentado con etanol alcanza la neutralidad de carbono, con un costo evitado 1,1 veces mayor que el costo de las emisiones. La gasolina C mostró un costo de emisiones 2.5 veces mayor que el costo reducido. El precio del carbono no fue suficiente para que la tecnología fuera más viable para el consumidor, con un NPV esperado de -USD 8006.38 en 10 años. Así, se espera obtener indicadores económicos para incentivar el uso de biocombustibles en las estaciones de carga eléctrica.
Descargas
Citas
G. T. Farmer and J. Cook, Climate Change Science: A Modern Synthesis Volume 1 - The Physical Climate, 1st ed. Springer Netherlands, 2013.
I. R. E. A. IRENA, Global Renewables Outlook: Energy Transformation 2050. International Renewable Energy Agency Abu Dhabi, 2020.
C. A. D. Melo, G. D. M. Jannuzzi, and P. H. D. M. Santana, “Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet?” Renewable and Sustainable Energy
Reviews, vol. 81, no. 1, Jan. 2018. [Online]. Available: https: //doi.org/10.1016/j.rser.2017.08.054
L. L. P. de Souza and et al., “Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation
system in Brazil,” Journal of Cleaner Production, vol. 203, Dec. 1, 2018. [Online]. Available: https://doi.org/10.1016/j.jclepro.2018.08.236
D. C. Rosenfeld, J. Lindorfer, and K. Fazeni-Fraisl, “Comparison of advanced fuels-Which technology can win from the life cycle perspective?” Journal of Cleaner Production, vol. 238, Nov. 20, 2019.[Online]. Available: https://doi.org/10.1016/j.jclepro.2019.117879
C. Angelo and C. Rittl, Análise das Emissões Brasileiras de Gases de Efeito Estufa e suas implicações para as metas do Brasil. SEEG, 2019.
IEA. (2019, May.) Global EV Outlook 2019: scaling up the transition to electric mobility. [Online]. Available: https://www.iea.org/reports/ global-ev-outlook-2019
C. V. Plaza, V. A. Guimarães, G. C. Skroder, G. M. Ribeiro, and L. da Silva, “Localização-alocação de centros de integração logística considerando critérios econômicos e ambientais,” presented at 33 ANPET Congresso de Pesquisa e Ensino em Transporte da ANPET, Balneário Camboriú, Brasil, 2019.
The World Bank. What is carbon pricing? Accessed Jun. 20, 2020. [Online]. Available: https://carbonpricingdashboard. worldbank.org/what-carbon-pricing
CEBDS - Conselho Empresarial Brasileiro para o Desenvolvimento Sustentáve, Precificação de Carbono: o que o setor empresarial precisasaber para se posicionar, WayCarbon and R. Motta, Eds. Barra da Tijuca, Brasil: CEBDS, 2016.
Partnership for Market Readiness. Accessed Ago. 17, 2020. [Online].
Available: https://www.thepmr.org/country/brazil-0
ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Produção e fornecimento de biocombustíveis. Accessed Ago. 17, 2020. [Online]. Available: http://www.anp.gov.br/producao-de-biocombustiveis/renovabio.
ICCT - The International Council on Clean Transportation. (2019, Jul. 26,) Opportunities and risks for continued biofuel expansion in Brazil. Accessed Ago. 17, 2020. [Online]. Available: https:
//theicct.org/publications/biofuel-expansion-Brazil
Z. Dimitrova and F. Maréchal, “Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender,” Renewable Energy, vol. 112, Nov. 2017. [Online].
Available: https://doi.org/10.1016/j.renene.2017.05.031
J. Wang, “Barriers of scaling-up fuel cells: Cost, durability and reliability,” Energy, vol. 80, Feb. 1, 2015. [Online]. Available: https://doi.org/10.1016/j.energy.2014.12.007
D. R. de Moraes, V. de Almeida, L. Hernández-Callejo, B. de Noronha, and R. A. Mancebo, “Solid Oxide Fuel Cell Electric Vehicle: Cost Reduction Based on Savings in Fixed Carbon by
Sugarcane,” in Proceedings of the III Ibero-American Conference on Smart Cities. Instituto Tecnológico de Costa Rica, 2020, pp. 774–789.
E. Facchinetti, D. Favrat, and F. Marechal, “Innovative Hybrid Cycle Solid Oxide Fuel Cell-Inverted Gas Turbine with CO2 Separation,” Fuel Cell, vol. 11, no. 4, Ago. 2011. [Online].
Available: https: //doi.org/10.1002/fuce.201000130
T. Choudhary and Sanjay, “Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization,” Energy, vol. 134, Sep. 1, 2017. [Online]. Available:
https://doi.org/10.1016/j.energy.2017.06.064
L. B. Braga, “Análise econômica do uso de célula a combustível para acionamento de ônibus urbano,” M.S. thesis, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista,
Guaratinguetá, Brasil, 2010.
R. A. M. Boloy, M. E. Silva, A. E. Valle, J. L. Silveira, and C. E. Tuna, “Thermoeconomic analysis of hydrogen incorporation in a biodiesel plant,” Applied Thermal Engineering, vol. 113, Feb. 25, 2017. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2016.10.171
Presidência da República Casa Civil Subchefia para Assuntos Jurídicos. (1997, Sep. 23,) Lei nº 9.503 - institui o código de tránsito brasileiro. [Online]. Available: http://www.planalto.gov.br/ccivil_03/
LEIS/L9503.htm
R. P. Micena, “Estação de produção e abastecimento de hidrogênio solar: análise técnica e econômica,” M.S. thesis, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista,
Guaratinguetá, Brasil, 2020.
F. A. Coutelieris, S. Douvartzides, and P. Tsiakaras, “The importance of the fuel choice on the efficiency of a solid oxide fuel cell system,” Journal of Power Sources, vol. 123, no. 2, Sep. 20, 2003. [Online].Available: https://doi.org/10.1016/S0378-7753(03)00559-7
L. B. Braga, “Aspectos técnico, econômicos e ecológicos de processos de produção de hidrogênio,” PhD thesis, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista,
Guaratinguetá, Brasil, 2014.
P. Tsiakaras and A. Demin, “Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol,” Journal of Power Sources, vol. 102, no. 1-2, Dic. 2001. [Online]. Available: https:
//doi.org/10.1016/S0378-7753(01)00803-5
R. da P. Fiuza, M. A. Silva, L. A. M. Pontes, L. S. G. Teixeira, and J. S. Boaventura, “A utilização de etanol em célula a combustível de óxido sólido,” Revisão Química Nova, vol. 35, no. 8, Jun. 15, 2012. [Online].Available: https://doi.org/10.1590/S0100-40422012000800025
V. Liso, G. Cinti, M. P. Nielsen, and U. Desideri, “Solid oxide fuel cell performance comparison fueled by methane, meoh, etoh and gasoline surrogate c8h18,” Communications Week, vol. 99, Abr. 25,
[Online]. Available: https://doi.org/10.1016/j.applthermaleng.2015.12.044
S. Rabe and et al., “Catalytic reforming of gasoline to hydrogen: Kinetic investigation of deactivation processes,” International Journal of Hydrogen Energy, vol. 34, no. 19, Oct. 2009. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2009.07.055
M. L. Carneiro and M. S. Gomes, “Energy-ecologic efficiency of waste-to-energy plants,” Energy Conversion and Management, vol. 195, Sep. 1, 2019. [Online]. Available: https://doi.org/10.1016/j.enconman.2019.05.098
J. C. Claros and E. V. Sperling, “Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil,” Renewable and
Sustainable Energy Reviews, vol. 72, May. 2017. [Online]. Available: https://doi.org/10.1016/j.rser.2017.01.046
T. Neamhom, C. Polprasert, and A. J. Englande, “Ways that sugarcane industry can help reduce carbon emissions in Thailand,” Journal of Cleaner Production, vol. 131, Sep. 10, 2016. [Online].
Available: https://doi.org/10.1016/j.jclepro.2016.04.142
EPA-United States Environmental Protection Agency. Greenhouse Gases Equivalencies Calculator - Calculations and References. Accessed Ago. 19, 2020. [Online]. Available: https://bit.ly/3jyLG1T
T. Larriba, R. Garde, and M. Santarelli, “Fuel cell early markets: Techno-economic feasibility study of PEMFC-based drivetrains in materials handling vehicles,” International Journal of Hydrogen
Energy, vol. 38, no. 5, Feb. 19, 2013. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2012.11.048
C. E. Chiaradia, “Estudo da viabilidade da implantação de frotas de veículos elétricos e híbridos elétricos no atual cenário econômico, político, energético e ambiental brasileiro,” Undergraduate thesis,
Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá, Brasil, 2015.
Y. Chaves, “Análise de viabilidade de um sistema híbrido alimentado por biogás e energia solar,” M.S. thesis, Instituto Politécnico de Bragança, Bragança, Portugal, 2020.
G. N. e. B. B. Agência Nacional do Petróleo, Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2020. Rio de Janeiro, Brasil: ANP, 2020.
Nissan Motor Corporation. (2016, Jun. 14,) Nissan announces development of the world’s first SOFC-powered vehicle system that runs on bio-ethanol electric power. Accessed Jun. 1, 2020.
[Online]. Available: https://global.nissannews.com/en/releases/160614-01-e?source=nng#&&.
S. Bubeck, J. Tomaschek, and U. Fahl, “Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany,” Transport Policy, vol. 50, Ago. 2016. [Online]. Available:
https://doi.org/10.1016/j.tranpol.2016.05.012
G. N. e. B. ANP-Agência Nacional do Petróleo. Renovabio. Accessed Jun. 10, 2020. [Online]. Available: http://www.anp.gov.br/producao-de-biocombustiveis/renovabio/renovacalc.
CEPEA-Center for Advanced Studies in Applied Economics. Etanol. Accessed Ago. 21, 2020. [Online]. Available: https://www.cepea.esalq.usp.br/br/indicador/etanol.aspx
G. N. e. B. B. Agência Nacional do Petróleo, Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2019. Rio de Janeiro, Brasil: APN, 2019.
C. Redriguez, C. E. Tuna, R. Zanzi, L. F. Vane, and J. L. Silveira, “Development of a thermoeconomic methodology for optimizing biodiesel production. Part II: Manufacture exergetic cost and biodiesel production cost incorporating carbon credits, a Brazilian case study,” Renewable and Sustainable Energy Reviews, vol. 29, Ene. 2014. [Online]. Available: https://doi.org/10.1016/j.rser.2013.08.064
FAO-Food and Agriculture Organization of the United Nations. Food and agriculture data. Accessed Ago. 21, 2020. [Online]. Available: http://www.fao.org/faostat/en/#data
C.-C. for Strategic Studies and Management, Second-generation sugarcane bioenergy y biochemicals: Advanced lowcarbon fuels for transport and industry. Brasilia: Center for Strategic Studies and Management, 2017.
Q. Qiao and et al., “Costo del ciclo de vida y beneficios de las emisiones de GEI de los vehículos eléctricos en China,” Investigación sobre transporte Parte D: Transporte y medio ambiente, vol. 86, Sep.
[Online]. Available: https://doi.org/10.1016/j.trd.2020.102418
D. R. de Moraes, R. Boloy, and G. M. Ribeiro, “Electromobility: A review on electric vehicle technologies and potentialities for the brazilian scenario,” in Efficient, Sustainable, and Fully Comprehensive Smart Cities. II Ibero-American Congress of Smart Cities. Cali: Universidad Santiago de Cali, 2020, pp. 658–669.
W. Choi, E. Yoo, E. Seol, M. Kim, and H. H. Song, “Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea,” Applied Energy,
vol. 265, May. 1, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.114754
A. C. Teixeira and J. R. Sodré, “Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions,” Transportation Research Part D: Transport
and Environment, vol. 59, Mar. 218. [Online]. Available: https://doi.org/10.1016/j.trd.2018.01.004
Empresa de Pesquisa Energética (Brasil), Balanço Energético Nacional 2019: Ano base 2018. Rio de Janeiro, Brasil: EPE, 2019.
M. F. Felgenhauer, M. A. Pellow, S. M. Benson, and T. Hamacher, “Economic and Environmental Prospects of Battery and Fuel Cell Vehicles for the Energy Transition in German Communities,”
Energy Procedia, vol. 99, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.egypro.2016.10.128
ECB-European Central Bank. (2021) ECB/Eurosystem policy and exchange rates. Accessed Abr. 8, 2021. [Online]. Available: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/html/index.en.html
E. Yoo, M. Kim, and H. H. Song, “Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea,” International Journal of Hydrogen Energy, vol. 43, no. 41, Oct. 11, 2018. [Online]. Available:
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Facultad de Ingeniería Universidad de Antioquia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los artículos disponibles en la Revista Facultad de Ingeniería, Universidad de Antioquia están bajo la licencia Creative Commons Attribution BY-NC-SA 4.0.
Eres libre de:
Compartir — copiar y redistribuir el material en cualquier medio o formato
Adaptar : remezclar, transformar y construir sobre el material.
Bajo los siguientes términos:
Reconocimiento : debe otorgar el crédito correspondiente , proporcionar un enlace a la licencia e indicar si se realizaron cambios . Puede hacerlo de cualquier manera razonable, pero no de ninguna manera que sugiera que el licenciante lo respalda a usted o su uso.
No comercial : no puede utilizar el material con fines comerciales .
Compartir igual : si remezcla, transforma o construye a partir del material, debe distribuir sus contribuciones bajo la misma licencia que el original.
El material publicado por la revista puede ser distribuido, copiado y exhibido por terceros si se dan los respectivos créditos a la revista, sin ningún costo. No se puede obtener ningún beneficio comercial y las obras derivadas tienen que estar bajo los mismos términos de licencia que el trabajo original.