SOFCEV: Conventional LCC reduction and NPV based on savings in fixed carbon by sugarcane
DOI:
https://doi.org/10.17533/udea.redin.20210952Keywords:
Life cycle cost, carbon credits, solid oxide fuel cell electric vehicle, carbon dioxide emissions, sugarcane ethanolAbstract
Carbon pricing is a cost-effective method for mitigating climate impacts. This article examines the conventional life cycle cost (LCC), net present value (NPV), and carbon dioxide (CO2) emissions of the Solid Oxide Fuel Cell Electric Vehicle (SOFCEV) powered by Brazilian fuels. The cost reduction potential of the SOFCEV was evaluated, considering the Brazilian productivity of sugarcane and the carbon fixed by these plantations, through the mechanism of carbon credits sale. Sugarcane ethanol and gasoline C (73% gasoline A and 27% anhydrous ethanol) were considered. Three scenarios were outlined: a) Cost of investment, fuel production, and vehicle maintenance and operation in USD/km, over a 10-year amortization period; b) SOFCEV emission cost from well-to-wheel added to cost (a); c) Cost of carbon fixed by hectares of sugarcane in Brazil necessary to supply the fuel demand of the SOFCEV subtracted from (b). Results showed that the ethanol-fuelled SOFCEV attends the carbon-neutral cycle, since the carbon credit sale resulted in an avoided cost 1.1 times higher than the emissions cost. Gasoline C showed similar results for the three scenarios, with an emission cost 2.5 times higher than the avoided cost. Carbon pricing was not sufficient to make the technology more viable for consumer, with an expected NPV of -USD 8006.38 after the amortization period. Thus, it is expected to obtain economic indicators to encourage the use of biofuels in electric fleets.
Downloads
References
G. T. Farmer and J. Cook, Climate Change Science: A Modern Synthesis Volume 1 - The Physical Climate, 1st ed. Springer Netherlands, 2013.
I. R. E. A. IRENA, Global Renewables Outlook: Energy Transformation 2050. International Renewable Energy Agency Abu Dhabi, 2020.
C. A. D. Melo, G. D. M. Jannuzzi, and P. H. D. M. Santana, “Why should Brazil to implement mandatory fuel economy standards for the light vehicle fleet?” Renewable and Sustainable Energy
Reviews, vol. 81, no. 1, Jan. 2018. [Online]. Available: https: //doi.org/10.1016/j.rser.2017.08.054
L. L. P. de Souza and et al., “Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation
system in Brazil,” Journal of Cleaner Production, vol. 203, Dec. 1, 2018. [Online]. Available: https://doi.org/10.1016/j.jclepro.2018.08.236
D. C. Rosenfeld, J. Lindorfer, and K. Fazeni-Fraisl, “Comparison of advanced fuels-Which technology can win from the life cycle perspective?” Journal of Cleaner Production, vol. 238, Nov. 20, 2019.[Online]. Available: https://doi.org/10.1016/j.jclepro.2019.117879
C. Angelo and C. Rittl, Análise das Emissões Brasileiras de Gases de Efeito Estufa e suas implicações para as metas do Brasil. SEEG, 2019.
IEA. (2019, May.) Global EV Outlook 2019: scaling up the transition to electric mobility. [Online]. Available: https://www.iea.org/reports/ global-ev-outlook-2019
C. V. Plaza, V. A. Guimarães, G. C. Skroder, G. M. Ribeiro, and L. da Silva, “Localização-alocação de centros de integração logística considerando critérios econômicos e ambientais,” presented at 33 ANPET Congresso de Pesquisa e Ensino em Transporte da ANPET, Balneário Camboriú, Brasil, 2019.
The World Bank. What is carbon pricing? Accessed Jun. 20, 2020. [Online]. Available: https://carbonpricingdashboard. worldbank.org/what-carbon-pricing
CEBDS - Conselho Empresarial Brasileiro para o Desenvolvimento Sustentáve, Precificação de Carbono: o que o setor empresarial precisasaber para se posicionar, WayCarbon and R. Motta, Eds. Barra da Tijuca, Brasil: CEBDS, 2016.
Partnership for Market Readiness. Accessed Ago. 17, 2020. [Online].
Available: https://www.thepmr.org/country/brazil-0
ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Produção e fornecimento de biocombustíveis. Accessed Ago. 17, 2020. [Online]. Available: http://www.anp.gov.br/producao-de-biocombustiveis/renovabio.
ICCT - The International Council on Clean Transportation. (2019, Jul. 26,) Opportunities and risks for continued biofuel expansion in Brazil. Accessed Ago. 17, 2020. [Online]. Available: https:
//theicct.org/publications/biofuel-expansion-Brazil
Z. Dimitrova and F. Maréchal, “Environomic design for electric vehicles with an integrated solid oxide fuel cell (SOFC) unit as a range extender,” Renewable Energy, vol. 112, Nov. 2017. [Online].
Available: https://doi.org/10.1016/j.renene.2017.05.031
J. Wang, “Barriers of scaling-up fuel cells: Cost, durability and reliability,” Energy, vol. 80, Feb. 1, 2015. [Online]. Available: https://doi.org/10.1016/j.energy.2014.12.007
D. R. de Moraes, V. de Almeida, L. Hernández-Callejo, B. de Noronha, and R. A. Mancebo, “Solid Oxide Fuel Cell Electric Vehicle: Cost Reduction Based on Savings in Fixed Carbon by
Sugarcane,” in Proceedings of the III Ibero-American Conference on Smart Cities. Instituto Tecnológico de Costa Rica, 2020, pp. 774–789.
E. Facchinetti, D. Favrat, and F. Marechal, “Innovative Hybrid Cycle Solid Oxide Fuel Cell-Inverted Gas Turbine with CO2 Separation,” Fuel Cell, vol. 11, no. 4, Ago. 2011. [Online].
Available: https: //doi.org/10.1002/fuce.201000130
T. Choudhary and Sanjay, “Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization,” Energy, vol. 134, Sep. 1, 2017. [Online]. Available:
https://doi.org/10.1016/j.energy.2017.06.064
L. B. Braga, “Análise econômica do uso de célula a combustível para acionamento de ônibus urbano,” M.S. thesis, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista,
Guaratinguetá, Brasil, 2010.
R. A. M. Boloy, M. E. Silva, A. E. Valle, J. L. Silveira, and C. E. Tuna, “Thermoeconomic analysis of hydrogen incorporation in a biodiesel plant,” Applied Thermal Engineering, vol. 113, Feb. 25, 2017. [Online]. Available: https://doi.org/10.1016/j.applthermaleng.2016.10.171
Presidência da República Casa Civil Subchefia para Assuntos Jurídicos. (1997, Sep. 23,) Lei nº 9.503 - institui o código de tránsito brasileiro. [Online]. Available: http://www.planalto.gov.br/ccivil_03/
LEIS/L9503.htm
R. P. Micena, “Estação de produção e abastecimento de hidrogênio solar: análise técnica e econômica,” M.S. thesis, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista,
Guaratinguetá, Brasil, 2020.
F. A. Coutelieris, S. Douvartzides, and P. Tsiakaras, “The importance of the fuel choice on the efficiency of a solid oxide fuel cell system,” Journal of Power Sources, vol. 123, no. 2, Sep. 20, 2003. [Online].Available: https://doi.org/10.1016/S0378-7753(03)00559-7
L. B. Braga, “Aspectos técnico, econômicos e ecológicos de processos de produção de hidrogênio,” PhD thesis, Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista,
Guaratinguetá, Brasil, 2014.
P. Tsiakaras and A. Demin, “Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol,” Journal of Power Sources, vol. 102, no. 1-2, Dic. 2001. [Online]. Available: https:
//doi.org/10.1016/S0378-7753(01)00803-5
R. da P. Fiuza, M. A. Silva, L. A. M. Pontes, L. S. G. Teixeira, and J. S. Boaventura, “A utilização de etanol em célula a combustível de óxido sólido,” Revisão Química Nova, vol. 35, no. 8, Jun. 15, 2012. [Online].Available: https://doi.org/10.1590/S0100-40422012000800025
V. Liso, G. Cinti, M. P. Nielsen, and U. Desideri, “Solid oxide fuel cell performance comparison fueled by methane, meoh, etoh and gasoline surrogate c8h18,” Communications Week, vol. 99, Abr. 25,
[Online]. Available: https://doi.org/10.1016/j.applthermaleng.2015.12.044
S. Rabe and et al., “Catalytic reforming of gasoline to hydrogen: Kinetic investigation of deactivation processes,” International Journal of Hydrogen Energy, vol. 34, no. 19, Oct. 2009. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2009.07.055
M. L. Carneiro and M. S. Gomes, “Energy-ecologic efficiency of waste-to-energy plants,” Energy Conversion and Management, vol. 195, Sep. 1, 2019. [Online]. Available: https://doi.org/10.1016/j.enconman.2019.05.098
J. C. Claros and E. V. Sperling, “Greenhouse gas emissions from sugar cane ethanol: Estimate considering current different production scenarios in Minas Gerais, Brazil,” Renewable and
Sustainable Energy Reviews, vol. 72, May. 2017. [Online]. Available: https://doi.org/10.1016/j.rser.2017.01.046
T. Neamhom, C. Polprasert, and A. J. Englande, “Ways that sugarcane industry can help reduce carbon emissions in Thailand,” Journal of Cleaner Production, vol. 131, Sep. 10, 2016. [Online].
Available: https://doi.org/10.1016/j.jclepro.2016.04.142
EPA-United States Environmental Protection Agency. Greenhouse Gases Equivalencies Calculator - Calculations and References. Accessed Ago. 19, 2020. [Online]. Available: https://bit.ly/3jyLG1T
T. Larriba, R. Garde, and M. Santarelli, “Fuel cell early markets: Techno-economic feasibility study of PEMFC-based drivetrains in materials handling vehicles,” International Journal of Hydrogen
Energy, vol. 38, no. 5, Feb. 19, 2013. [Online]. Available: https://doi.org/10.1016/j.ijhydene.2012.11.048
C. E. Chiaradia, “Estudo da viabilidade da implantação de frotas de veículos elétricos e híbridos elétricos no atual cenário econômico, político, energético e ambiental brasileiro,” Undergraduate thesis,
Faculdade de Engenharia de Guaratinguetá, Universidade Estadual Paulista, Guaratinguetá, Brasil, 2015.
Y. Chaves, “Análise de viabilidade de um sistema híbrido alimentado por biogás e energia solar,” M.S. thesis, Instituto Politécnico de Bragança, Bragança, Portugal, 2020.
G. N. e. B. B. Agência Nacional do Petróleo, Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2020. Rio de Janeiro, Brasil: ANP, 2020.
Nissan Motor Corporation. (2016, Jun. 14,) Nissan announces development of the world’s first SOFC-powered vehicle system that runs on bio-ethanol electric power. Accessed Jun. 1, 2020.
[Online]. Available: https://global.nissannews.com/en/releases/160614-01-e?source=nng#&&.
S. Bubeck, J. Tomaschek, and U. Fahl, “Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany,” Transport Policy, vol. 50, Ago. 2016. [Online]. Available:
https://doi.org/10.1016/j.tranpol.2016.05.012
G. N. e. B. ANP-Agência Nacional do Petróleo. Renovabio. Accessed Jun. 10, 2020. [Online]. Available: http://www.anp.gov.br/producao-de-biocombustiveis/renovabio/renovacalc.
CEPEA-Center for Advanced Studies in Applied Economics. Etanol. Accessed Ago. 21, 2020. [Online]. Available: https://www.cepea.esalq.usp.br/br/indicador/etanol.aspx
G. N. e. B. B. Agência Nacional do Petróleo, Anuário estatístico brasileiro do petróleo, gás natural e biocombustíveis: 2019. Rio de Janeiro, Brasil: APN, 2019.
C. Redriguez, C. E. Tuna, R. Zanzi, L. F. Vane, and J. L. Silveira, “Development of a thermoeconomic methodology for optimizing biodiesel production. Part II: Manufacture exergetic cost and biodiesel production cost incorporating carbon credits, a Brazilian case study,” Renewable and Sustainable Energy Reviews, vol. 29, Ene. 2014. [Online]. Available: https://doi.org/10.1016/j.rser.2013.08.064
FAO-Food and Agriculture Organization of the United Nations. Food and agriculture data. Accessed Ago. 21, 2020. [Online]. Available: http://www.fao.org/faostat/en/#data
C.-C. for Strategic Studies and Management, Second-generation sugarcane bioenergy y biochemicals: Advanced lowcarbon fuels for transport and industry. Brasilia: Center for Strategic Studies and Management, 2017.
Q. Qiao and et al., “Costo del ciclo de vida y beneficios de las emisiones de GEI de los vehículos eléctricos en China,” Investigación sobre transporte Parte D: Transporte y medio ambiente, vol. 86, Sep.
[Online]. Available: https://doi.org/10.1016/j.trd.2020.102418
D. R. de Moraes, R. Boloy, and G. M. Ribeiro, “Electromobility: A review on electric vehicle technologies and potentialities for the brazilian scenario,” in Efficient, Sustainable, and Fully Comprehensive Smart Cities. II Ibero-American Congress of Smart Cities. Cali: Universidad Santiago de Cali, 2020, pp. 658–669.
W. Choi, E. Yoo, E. Seol, M. Kim, and H. H. Song, “Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea,” Applied Energy,
vol. 265, May. 1, 2020. [Online]. Available: https://doi.org/10.1016/j.apenergy.2020.114754
A. C. Teixeira and J. R. Sodré, “Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions,” Transportation Research Part D: Transport
and Environment, vol. 59, Mar. 218. [Online]. Available: https://doi.org/10.1016/j.trd.2018.01.004
Empresa de Pesquisa Energética (Brasil), Balanço Energético Nacional 2019: Ano base 2018. Rio de Janeiro, Brasil: EPE, 2019.
M. F. Felgenhauer, M. A. Pellow, S. M. Benson, and T. Hamacher, “Economic and Environmental Prospects of Battery and Fuel Cell Vehicles for the Energy Transition in German Communities,”
Energy Procedia, vol. 99, Nov. 2016. [Online]. Available: https://doi.org/10.1016/j.egypro.2016.10.128
ECB-European Central Bank. (2021) ECB/Eurosystem policy and exchange rates. Accessed Abr. 8, 2021. [Online]. Available: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/html/index.en.html
E. Yoo, M. Kim, and H. H. Song, “Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea,” International Journal of Hydrogen Energy, vol. 43, no. 41, Oct. 11, 2018. [Online]. Available:
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Facultad de Ingeniería Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Revista Facultad de Ingeniería, Universidad de Antioquia is licensed under the Creative Commons Attribution BY-NC-SA 4.0 license. https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material
Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
NonCommercial — You may not use the material for commercial purposes.
ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
The material published in the journal can be distributed, copied and exhibited by third parties if the respective credits are given to the journal. No commercial benefit can be obtained and derivative works must be under the same license terms as the original work.