Intermitencia caótica con función M(x) no diferenciable

Autores/as

DOI:

https://doi.org/10.17533/udea.redin.20230110

Palabras clave:

intermitencia, reinyección, función de densidad de probabilidad de reinyección discontinua

Resumen

En este trabajo se estudian mapas unidimensionales que muestran intermitencia caótica con funciones de densidad de probabilidad de reinyección discontinuas. Para estos mapas, el mecanismo de reinyección posee dos procesos diferentes. Para analizar el mecanismo de reinyección completo y determinar la función de densidad de probabilidad de reinyección discontinua, se aplica la metodología de la función M. Dicha función es continua y no derivable. Se encuentran ecuaciones teóricas para la función M(x) y para la función de densidad de probabilidad de reinyección. Finalmente, los resultados teóricos se comparan con datos numéricos encontrándose una alta precisión entre ambos.

|Resumen
= 520 veces | PDF (ENGLISH)
= 143 veces| | HTML (ENGLISH)
= 0 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Sergio Elaskar, Universidad de Córdoba

Profesor, Departamento de Aeronáutica

Ezequiel Del Río, Universidad Politécnica de Madrid

Profesor del Departamento de Física Aplicada, ETSIAE.

Mauro Grioni, Consejo Nacional de Investigaciones Científicas y Técnicas CONICET

Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina

Citas

S. Elaskar and E. Del Río, New advances on chaotic intermittency and its applications. Springer, 2017.

H. G. Schuster and W. Just, Deterministic chaos. John Wiley & Sons, 2005.

A. H. Nayfeh and B. Balachandran, Applied nonlinear dynamics. John Wiley & Sons, 1995.

G. Pizza, C. E. Frouzakis, and J. Mantzaras, “Chaotic dynamics in premixed hydrogen/air channel flow combustion,” Combustion Theory and Modelling, vol. 16, no. 2, pp. 275–299, 2012.

P. De Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, and P. Davy, “Flow intermittency, dispersion, and correlated continuous time random walks in porous media,” Physical review letters, vol. 110, no. 18, p. 184502, 2013.

C. Stan, C. Cristescu, and D. Dimitriu, “Analysis of the intermittent behavior in a low-temperature discharge plasma by recurrence plot quantification,” Physics of Plasmas, vol. 17, no. 4, p. 042115, 2010.

A. Chian, Complex systems approach to economic dynamics. Springer Science & Business Media, 2007.

J. Żebrowski and R. Baranowski, “Type i intermittency in nonstationary systems—models and human heart rate variability,” Physica A: Statistical Mechanics and Its Applications, vol. 336, no. 1-2, pp. 74–83, 2004.

P. Paradisi, P. Allegrini, A. Gemignani, M. Laurino, D. Menicucci,and A. Piarulli, “Scaling and intermittency of brain events as a manifestation of consciousness,” in AIP Conference Proceedings, vol. 1510, no. 1. American Institute of Physics, 2013, pp. 151–161.

J. Bragard, J. Vélez, J. Riquelme, L. Pérez, R. Hernández-García, R. Barrientos, and D. Laroze, “Study of type-iii intermittency in the landau–lifshitz-gilbert equation,” Physica Scripta, vol. 96, no. 12, p.124045, 2021.

P. Ge and H. Cao, “Intermittent evolution routes to the periodic or the chaotic orbits in rulkov map,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 9, p. 093119, 2021.

I. Belyaev, D. Biryukov, D. N. Gerasimov, and E. Yurin, “On-off intermittency and hard turbulence in the flow of fluid in the magnetic field,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, no. 8, p. 083119, 2019.

P. Bordbar and S. Ahadpour, “Type-i intermittency from Markov binary block visibility graph perspective,” Journal of Applied Statistics, vol. 48, no. 7, pp. 1303–1318, 2021.

L.-W. Kong, H. Fan, C. Grebogi, and Y.-C. Lai, “Emergence of transient chaos and intermittency in machine learning,” Journal of Physics: Complexity, vol. 2, no. 3, p. 035014, 2021.

S. G. Stavrinides, A. N. Miliou, T. Laopoulos, and A. Anagnostopoulos, “The intermittency route to chaos of an electronic digital oscillator,” International Journal of Bifurcation and Chaos, vol. 18, no. 05, pp.1561–1566, 2008.

S. Zambrano, I. P. Mariño, and M. A. Sanjuán, “Controlling crisis-induced intermittency using its relation with a boundary crisis,” New Journal of Physics, vol. 11, no. 2, p. 023025, 2009.

P. Manneville and Y. Pomeau, “Intermittency and the lorenz model,” Physics Letters A, vol. 75, no. 1-2, pp. 1–2, 1979.

M. Bauer, S. Habip, D.-R. He, and W. Martienssen, “New type of intermittency in discontinuous maps,” Physical review letters, vol. 68, no. 11, p. 1625, 1992.

D.-R. He, M. Bauer, S. Habip, U. Krueger, W. Martienssen, B. Christiansen, and B.-H. Wang, “Type v intermittency,” Physics Letters A, vol. 171, no. 1-2, pp. 61–65, 1992.

J. Fan, F. Ji, S. Guan, B.-H. Wang, and D.-R. He, “The distribution of laminar lengths in type v intermittency,” Physics Letters A, vol. 182, no. 2-3, pp. 232–237, 1993.

T. Price and T. Mullin, “An experimental observation of a new type of intermittency,” Physica D: Nonlinear Phenomena, vol. 48, no. 1, pp. 29–52, 1991.

N. Platt, E. Spiegel, and C. Tresser, “On-off intermittency: A mechanism for bursting,” Physical Review Letters, vol. 70, no. 3, p. 279, 1993.

J. Heagy, N. Platt, and S. Hammel, “Characterization of on-off intermittency,” Physical Review E, vol. 49, no. 2, p. 1140, 1994.

A. Pikovsky, G. Osipov, M. Rosenblum, M. Zaks, and J. Kurths, “Attractor-repeller collision and eyelet intermittency at the transition to phase synchronization,” Physical review letters, vol. 79, no. 1, p. 47, 1997.

A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization: a universal concept in nonlinear science,” 2002.

M. Kurovskaya, “Distribution of laminar phases at eyelet-type intermittency,” Technical Physics Letters, vol. 34, no. 12, pp. 1063–1065, 2008.

A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, and S. Boccaletti, “Ring intermittency in coupled chaotic oscillators at the boundary of phase synchronization,” Physical review letters, vol. 97, no. 11, p. 114101, 2006.

J. Hirsch, B. Huberman, and D. Scalapino, “Theory of intermittency,” Physical Review A, vol. 25, no. 1, p. 519, 1982.

S. Elaskar, E. Del Rio, and J. M. Donoso, “Reinjection probability density in type-iii intermittency,” Physica A: Statistical Mechanics and its Applications, vol. 390, no. 15, pp. 2759–2768, 2011.

E. del Rio, S. Elaskar, and V. A. Makarov, “Theory of intermittency applied to classical pathological cases,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 23, no. 3, p. 033112, 2013.

E. del Rio, S. Elaskar, and J. M. Donoso, “Laminar length and characteristic relation in type-i intermittency,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 4, pp. 967–976, 2014.

G. Krause, S. Elaskar, and E. del Río, “Noise effect on statistical properties of type-i intermittency,” Physica A: Statistical Mechanics and its Applications, vol. 402, pp. 318–329, 2014.

S. Elaskar, E. del Rio, G. Krause, and A. Costa, “Effect of the lower boundary of reinjection and noise in type-ii intermittency,” Nonlinear Dynamics, vol. 79, no. 2, pp. 1411–1424, 2015.

S. Elaskar and E. Del Río, “Discontinuous reinjection probability density functions in type v intermittency,” Journal of Computational and Nonlinear Dynamics, vol. 13, no. 12, p. 121001, 2018.

S. Elaskar, E. Del Rio, and A. Costa, “Reinjection probability density for type-iii intermittency with noise and lower boundary of reinjection,” Journal of Computational and Nonlinear Dynamics, vol. 12, no. 3, p. 031020, 2017.

S. Elaskar, E. del Río, and S. Elaskar, “Intermittency reinjection in the logistic map,” Symmetry, vol. 14, no. 3, p. 481, 2022.

S. Elaskar, E. del Río, and W. Schulz, “Analysis of the type v intermittency using the perron-frobenius operator,” Symmetry, vol. 14, p. 2519, 2022.

S. Elaskar, E. del Río, and L. Gutierrez Marcantoni, “Nonuniform reinjection probability density function in type v intermittency,” Nonlinear Dynamics, vol. 92, p. 683697, 2018.

Publicado

2023-01-27

Cómo citar

Elaskar, S., Del Río, E., & Grioni, M. (2023). Intermitencia caótica con función M(x) no diferenciable. Revista Facultad De Ingeniería Universidad De Antioquia, (110), 56–64. https://doi.org/10.17533/udea.redin.20230110

Número

Sección

Artículo de investigación