Risk measurement under extreme events. An in-context methodological review

Authors

  • Jorge Uribe University of Valle
  • Inés Ulloa University of Valle

DOI:

https://doi.org/10.17533/udea.le.n76a12812

Keywords:

Value at risk, expected tail loss, extreme value theory, Latin American stock markets, extreme risks

Abstract

This paper reviews the basic methodologies for the estimation of Value at Risk (VaR) that are currently in use in international stock and financial market regulation and portfolio management. The main shortcomings of these methodologies are exposed and the direct consequences of ignoring these limitations are analyzed, the latter highlighted by the recent global financial crisis of 2007-2009. In addition, methodologies for the estimation of expected tail losses, based on the Extreme Value Theory, are examined. Both kinds of measures are contrasted with the aim to create a ‘risk ranking’ of different stock markets around the world. The study explores the major Latin American markets and some in developed countries. The lessons widely highlighted in the academic literature related to the shortcomings of VaR when markets face extreme events are corroborated. The paper concludes by stressing the need for more robust measures focused on the tails of the distribution in the measurement of risk.

|Abstract
= 353 veces | PDF (ESPAÑOL (ESPAÑA))
= 87 veces| | HTML (ESPAÑOL (ESPAÑA))
= 31 veces|

Downloads

Download data is not yet available.

Author Biographies

Jorge Uribe, University of Valle

Professor of the Department of Economics of the Universidad del Valle (he was linked until August 2011) and member of the research group Applied Macroeconomics and Financial Economics

Inés Ulloa, University of Valle

Professor in the Department of Economics at Universidad del Valle and member of the research group Applied Macroeconomics and Financial Economics.

References

Aizenman, Joshua (2009). “Financial Crisis and The Paradox of Under and Over Regulation”, Working paper, No. 15018, NBER, publicación disponible en internet en http://www.nber.org/papers/w15018.pdf

Arango, Juan Pablo, Arias, Mauricio, Gómez, Esteban, Salamanca, David

y Vásquez, Diego Mauricio (2005). “Estimación de los requerimientos de capital por riesgo de mercado”, Reporte de Estabilidad Financiera, Diciembre de 2005, pp. 88-99.

Artzner, Philippe, y Delbaen, Freddy, Eber, Jean-Marc y Heath, David (1999). “Coherent Measures of Risk”, Mathematical Finance, Vol. IX, pp. 203-228.

Balkema, August y de Hann, Laurens (1974). “ Residual Life Time at Great Age”, The Annals of Probability, Vol. V, No. 2, pp. 792-804.

Becerra, Oscar y Melo, Luis Fernando (2008). “Usos e implicaciones de la cópula en la medición del riesgo financiero”, Borradores de Economía, No. 489, Banco de la República.

Bhattacharyya, Malay y Ritolia, Gopal (2008). “ Conditional VaR using EVT – Towards a Planned Margin Scheme”, International Review of Financial Analysis, Vol. XVII, pp. 382–395.

Booth, Philip. (Ed.) (2009). Verdict on the Crash: Causes and Policy Implications, Londres: Institute of Economic Affairs.

Christoffersen, Peter (2003). Elements of Financial Risk Management, San Diego CA: Elsevier Science.

Dowd, Kevin (2005). Measuring Market Risk, Second Edition, Chichester: Jhon Wiley & Sons.

Dowd, Kevin (2009). “The Failure of Capital Adequacy Regulation” en Verdict on the Crash: Causes and Policy Implications, Ed. Phillip Booth, Londres: The Institute of Economic Affairs.

Embrechts, Paul, Kluppelberg, Claudia, y Mikosch, Thomas (1997). Modeling Extremal Events for Insurance and Finance. Berlin: SpringerVerlag.

Engle, Robert (2002). “Dynamic Conditional Correlation- a Simple Class of Multivariate Generalized Autoregresive Heteroskedasticity Models”, Journal of Business and Economics Statistics, Vol. XX, No. 3, pp. 339-50

Engle, Robert (1982). “Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation”, Econometrica, Vol. L, No. 4, pp. 987-1008.

Fama, Eugene (1970). “Efficient Capital Markets: A Review of Theory and Empirical Work”, Journal of Finance, Vol. XXV, pp.383-417.

Fernández, Viviana (2005). “Risk Management under Extreme Events” International Review of Financial Analysis, Vol. XIV, No.2, pp. 113-148.

Fisher, Ronald Aylmer y Tippet, Leonard Henry Caleb (1928). “Limiting Forms of the Frequency Distribution of the Largest of Smallest Members of a Sample”, Proceeding of the Cambridge Philosophical Society, Vol. XXIV, pp. 180-190.

Freixas, Xavier (2009). “Post Crisis Challenges to Bank Regulation”, Working paper, No. 1201, Universitat Pompeu Fabra.

Gençay, Ramazan y Selçuk, Faruk (2004). “Extreme Value Theory and Value-at-Risk: Relative Performance in Emerging Markets”, International Journal of Forecasting, Vol. XX, pp. 287-303.

Gençay, Ramazan, Selçuk, Faruk y Ulugülya, Abdurrahman (2003).“High Volatility, Thick Tails and Extreme Value Theory in Value-at- Risk Estimation”, Vol. XXXIII, No.2, pp. 337-356.

Gnedenko, B.V. (1943). “Sur La Distribution Limite du Terme Maximun D’une Serie Aleatorie”, Annals of Mathematics, Vol. XLIV, pp. 423-453.

J.P. Morgan/Reuters (1996). Risk MetricsTM -Technical Document, Nueva York, NJ: Reuters Ltd, Cuarta Edición.

Laux, Christian y Leuz, Christian (2009). “ Did Fair-Value Accounting Contribute to the Financial Crisis?”, Working paper, No. 15515, NBER, publicación disponible en internet en http://www.nber.org/papers/w15515.pdf

Mälkönen, Ville (2009). “Financial Conglomeration and Monitoring Incentives”, Journal of Financial Stability, Vol. V, pp.105-123.

Markowitz, Harry (1959). Portfolio Selection: Efficient Diversification of Investments, New York : Jhon Wiley & Sons.

Martínez, Oscar y Uribe, Jorge Mario (2008). “Una aproximación dinámica a la medición del riesgo de mercado para los bancos comerciales en Colombia”, Reporte de Estabilidad Financiera, Abril de 2008.

McNeil, Alexander, Frey, Rüdiger, y Embrechts Paul (2005). Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton, NJ: Princeton University Press.

Melo, Luis Fernando y Granados, Joan (2010). “Regulación y valor en riesgo”, Borradores de Economía, No. 615, Banco de la República de Colombia.

Melo, Luis Fernando y Becerra, Oscar (2006). “Una aproximación a la dinámica de las tasas de interés de corto plazo en Colombia a través de Modelos GARCH Multivariados”, Borradores de Economía, No. 366, Banco de la República de Colombia.

PickandS, James (1975). “Statistical Inference Using Extreme Order Statistics”, Annals of Statistics, Vol. III, No.1, pp 119-131.

Shleifer, Andrei (2010). “Efficient Regulation”, Working paper, No. 15651, NBER, publicación disponible en internet en http://www.nber.org/papers/w15651

Stiglitz, Joseph (2009). “The Current Economic Crisis and Lessons for Economic Theory”, Eastern Economic Journal, Vol. XXXV, pp. 281-296.

Stulz, René (2009). “Credit Default Swaps and the Credit Crisis”, Working paper, No. 15384, NBER, publicación disponible en internet en http://www.nber.org/papers/w15384

Temin, Peter (2010). “The Great Recession and the Great Depression”, Working paper, No. 15645, NBER, publicación disponible en internet en http://www.nber.org/papers/w15645

Torres, Gabriel Ignacio, Olarte, Ana Milena. (2009), “Valor en riesgo desde un enfoque de cópulas”. Revista Ad-Minister, Vol. XV, pp. 113-136.

Wang., Zongrun, Jin, Yanbo y Zhou, Yanju. (2010), “Estimating Portfolio Risk using GARCH-EVT-Copula: An Empirical Study on Exchange Rate Market”, Lectures Notes in Electrical Engineering, Vol. LXVII, No.1, pp. 65-72.

White, Lawrence. (2009), “Financial Regulation and the Current Crisis: A Guide for the Antitrust Community”, Working paper, Stern School of Business (NYU), publicación disponible en internet en http://ssrn.com/abstract=1426188

Published

2012-09-03

How to Cite

Uribe, J., & Ulloa, I. (2012). Risk measurement under extreme events. An in-context methodological review . Lecturas De Economia, (76), 87–117. https://doi.org/10.17533/udea.le.n76a12812

Issue

Section

Articles