Differential force degradation of intermaxillary latex and non-latex elastics in vitro

  • Oscar Andrés Montenegro-Moncayo Universidad Antonio Nariño
  • Jenny Adriana Mosquera-Hurtado Universidad Antonio Nariño
  • Gretel Gonzalez-Colmenares Universidad Antonio Nariño http://orcid.org/0000-0002-1908-959X
  • Yeily Isabel Thomas-Alvarado Universidad Antonio Nariño
Keywords: Orthodontics, latex, orthodontic appliances, modulus of elasticity


Introduction: Various in vitro studies report that latex and non-latex elastics lose some of their initial force after they have been placed in the oral cavity. However, several differences occur within one single manufacturer, which could be of importance in selecting elastics. The aim of the present study was to conduct an in vitro evaluation of force loss in latex and non-latex elastics of a same manufacturer, activated in conditions simulating the oral cavity. Methods: we used 40 intermaxillary latex (n = 20) and non-latex (n = 20) ¼" 6 oz (170.10 g) elastics, stretched to 18 mm and immersed in artificial saliva for 24 hours. Force-displacement was measured using a test dynamometer, calculating the percentage of force relaxation (%R) at 0, 6, 12, 18, and 24 hours. The Kruskal-Wallis test was used to compare the groups. Results: latex elastics significantly offered greater force than non-latex elastics during all evaluations (p < 0.05). The %R in latex elastics at 24 hours was 8.7% and 9.2% in non-latex elastics. The largest force loss in both materials occurred during the first six hours. The difference in %R between the two materials was statistically significant between 0 and 6 hours. Conclusions: the latex and non-latex elastics used in this study can be equally used in clinical practice. However, the use of both elastics must be kept under strict control to achieve efficient orthodontic mechanics, since the period of greatest instability occurred between 0 and 6 hours.

= 126 veces | PDF
= 122 veces|


Download data is not yet available.

Author Biographies

Oscar Andrés Montenegro-Moncayo, Universidad Antonio Nariño

DDS, postgraduate student in Orthodontics, Universidad Antonio Nariño, Colombia 

Jenny Adriana Mosquera-Hurtado, Universidad Antonio Nariño

DDS, postgraduate student in Orthodontics, Universidad Antonio Nariño, Colombia 

Gretel Gonzalez-Colmenares, Universidad Antonio Nariño
DDS, PhD in Physical and Forensic Anthropology, Assistant Professor, School of Dentistry, Universidad Antonio Nariño, Colombia.
Yeily Isabel Thomas-Alvarado, Universidad Antonio Nariño

DDS, Public Health Specialist. Professor at the School of Dentistry, Universidad Antonio Nariño, Colombia


Wong AK. Orthodontic elastic materials. Angle Orthod. 1976; 46(2): 196-205. DOI: https://doi.


Brantley WA, Salander S, Myers CL, Winders RV. Effects of prestretching on force degradation

characteristics of plastic modules. Angle Orthod. 1979; 49(1): 37-43. https://doi.org/10.1043/0003-


Cronin E. Contact dermatitis. Edinburgh, UK: Churchill Livingstone; 1980.

Hain MA, Longman LP, Field EA, Harrison JE. Natural rubber latex allergy: implications for the orthodontist.

J Orthod. 2007; 34(1): 6-11. DOI: https://doi.org/10.1179/146531207225021861

Forestadent® German Precision in Orthodontics. Catálogo de Productos Forestadent. https://www.


Baty DL, Storie DJ, von-Fraunhofer JA. Synthetic elastomeric chains: a literature review. Am J Orthod

Dentofacial Orthop. 1994; 105(6): 536-42. DOI: https://doi.org/10.1016/S0889-5406(94)70137-7

Wang T, Zhou G, Tan X, Dong Y. Evaluation of force degradation characteristics of orthodontic latex

elastics in vitro and in vivo. Angle Orthod. 2007; 77(4): 688-93. DOI: https://doi.org/10.2319/022306-76

Ferriter JP, Meyers CE, Lorton L. The effect of hydrogen ion concentration on the force-degradation rate

of orthodontic polyurethane chain elastics. Am J Orthod Dentofacial Orthop. 1998; 98(5): 404-410. DOI:


Kanchana P, Godfrey K. Calibration of force extension and force degradation characteristics of orthodontic

latex elastics. Am J Orthod Dentofacial Orthop. 2000; 118(3): 280-7. DOI: https://doi.org/10.1067/


Andreasen GF, Bishara SE. Comparison of alastik chains with elastics involved with intra-arch molar to molar

forces. Angle Orthod. 1970; 40(3): 151-8. DOI https://doi.org/10.1043/0003-3219(1970)040<0151:COA


De Genova DC, McInnes-Ledoux P, Weinberg R, Shaye R. Force degradation of orthodontic elastomeric

chains—a product comparison study. Am J Orthod. 1985; 87(5): 377-84.

Yogosawa F, Nisimaki H, Ono E. Degradation of orthodontic elastics. J Jap Orthod Soc. 1967; 26(1): 49-55.

Russell KA, Milne AD, Khanna RA, Lee JM. In vitro assessment of the mechanical properties of latex and

non-latex orthodontic elastics. Am J Orthod Dentofacial Orthop. 2001; 120(1): 36-44. DOI: https://doi. org/10.1067/mod.2001.114642

Fernandes D, Abrahao G, Elias C, Mendes A. Force relaxation characteristics of medium force

orthodontic latex elastics: a pilot study. Inter Scholar Res Network Dent. 2011; 536089. DOI: https://doi.


Kersey M, Glover K, Heo G, Raboud D, Major PW. An in vitro comparison of 4 brands of nonlatex

orthodontic elastics. Am J Orthod Dentofacial Orthop. 2003; 123(4): 401-7. DOI: https://doi.org/10.1067/


Pithon M, Souza R, Andrade L, de-Souza R. Mechanical properties intermaxillary latex and latex-free

elastics. J World Federation Orthod. 2013; 2(1): e15-8. https://doi.org/10.1016/j.ejwf.2013.01.004

Kersey ML, Glover KE, Heo G, Raboud D, Major PW. A comparison of dynamic and static testing of latex

and nonlatex orthodontic elastics. Angle Orthod. 2003; 73(2): 181-6. DOI: https://doi.org/10.1043/0003-


López N, Vicente A, Bravo LA, Calvo JL, Canteras M. In vitro study of force decay of latex and non-latex

orthodontic elastics. Eur J Orthod. 2012; 34(2): 202-7. DOI: https://doi.org/10.1093/ejo/cjq188

Hwang CJ, Cha JY. Mechanical and biological comparison of latex and silicone rubber bands. Am J Orthod

Dentofacial Orthop. 2003; 124(4): 379-86. DOI: https://doi.org/10.1016/S088954060300564X

Aljhani AS, Aldrees AM. The effect of static and dynamic testing on orthodontic latex and non-latex elastics.

Orthod Waves. 2010; 26; 69(3): 117-122. DOI: https://doi.org/10.1016/j.odw.2010.04.003

Pithon MM, Mendes JL, da Silva CA, Lacerda-Dos-Santos R, Coqueiro RD. Force decay of latex and non-

latex intermaxillary elastics: a clinical study. Eur J Orthod. 2016; 38(1) 39-43. DOI: https://doi.org/10.1093/


Hershey G, Reynolds W. The plastic module as an orthodontic tooth-moving mechanism. Am J Orthod.

; 67(5): 554-62.

Alavi S, Tabatabaie AR, Hajizadeh F, Ardekani AH. An in-vitro comparison of force loss of orthodontic non-

latex elastics. J Dent (Tehran). 2014; 11(1): 10-6.

Liu CC, Wataha JC, Craig RG. The effect of repeated stretching on the force decay and compliance of

vulcanized cis-polyisoprene orthodontic elastics. Dent Mater. 1993; 9(1): 37-40.

Bell WR. A study of applied force as related to the use of elastics and coil springs. Angle Orthod 1951;

(3): 151-4. DOI: https://doi.org/10.1043/0003-3219(1951)021<0151:ASOAFA>2.0.CO;2

Shailaja AM, Santosh R, Vedhavathi HK, Keerthi NV. Assessment of the force decay and the influence of pH

levels on three different brands of latex and non-latex orthodontic elastics: an in vitro study. International

Journal of Applied Dental Sciences. 2016; 2(2): 28-34.

Pithon MM, Rodrigues AC, Sousa EL, Santos LP, Soares-Ndos S. Do mouthwashes with and without

bleaching agents degrade the force of elastomeric chains? Angle Orthod. 2013; 83(4): 712-7. DOI: https://


How to Cite
Montenegro-Moncayo O. A., Mosquera-Hurtado J. A., Gonzalez-Colmenares G., & Thomas-Alvarado Y. I. (2018). Differential force degradation of intermaxillary latex and non-latex elastics in vitro. Revista Facultad De Odontología Universidad De Antioquia, 30(1), 24-31. https://doi.org/10.17533/udea.rfo.v30n1a3