Relationship of the use of mouthwashes with the decrease in the viral load of SARS-CoV-2 in dental practice: topic review

Authors

  • Miguel Alessandro Taboada-Granados Universidad Científica del Sur https://orcid.org/0000-0002-5863-9697
  • Esteban Mauricio Colina-Neyra Universidad Científica del Sur
  • Eliberto Ruiz-Ramirez Universidad Científica del Sur

Keywords:

Covid-19, cetylpyridinium, chlorhexidine, povidone-Iodine, hydrogen peroxide, mouthwashes

Abstract


It is currently known that the dentist is one of the health professionals with the highest risk of contagion of COVID-19 due to its direct contact with the oral cavity. High exposure to aerosols generated by rotating instruments in COVID-19 patients increases contact with the SARS-CoV-2 viral load in routine procedures. It has been described that mouthwashes prior to dental care could be effective solutions to reduce contagion despite their little clinical evidence. Mouthwashes with cetylpyridinium chloride (CPC), hydrogen peroxide (H2O2), povidone-iodine (PVP-I) and chlorhexidine gluconate (CHX) show great potential to reduce the viral load of SARS-CoV-2 in the aerosols generated from saliva during the dental visit. Therefore, the objective of this article was to review the current scientific information on the relationship of the use of mouthwashes with the decrease in the viral load of SARS-CoV-2.

|Abstract
= 541 veces | PDF (ESPAÑOL (ESPAÑA))
= 49 veces|

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Miguel Alessandro Taboada-Granados, Universidad Científica del Sur

Estudiante de odontología de la Universidad Científica del Sur, Lima – Perú.

Esteban Mauricio Colina-Neyra, Universidad Científica del Sur

Estudiante de odontología de la Universidad Científica del Sur, Lima – Perú

Eliberto Ruiz-Ramirez, Universidad Científica del Sur

Magíster en farmacología (Universidad Nacional Mayor de San Marcos) y diplomado en inmunología clínica (Universidad Privada Cayetano Heredia). Universidad Científica del Sur, Lima – Perú

References

World Health Organization. Listings of WHO’s response to COVID-19 [Internet]. 2020 [acceso 28 de noviembre del 2020]. Disponible en: https://www.who.int/news/item/29-06-2020-covidtimeline

Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med (Lond). 2020; 20(2): 124–7. DOI: https://doi.org/10.7861/clinmed.2019-coron

Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science. 2020; 368(6492): 779–82. DOI: https://doi.org/10.1126/science.abb7498

Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog. 2020; 16(8): e1008762. DOI: http://dx.doi.org/10.1371/journal.ppat.1008762

Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020; 9(1): 601–4. DOI: https://doi.org/10.1080/22221751.2020.1739565

Siles-Garcia AA, Alzamora-Cepeda AG, Atoche-Socola KJ, Peña-Soto C, Arriola-Guillén LE. Biosafety for dental patients during dentistry care after COVID-19: a review of the literature. Disaster Med Public Health Prep. 2020; 15(3): 1–6. DOI: https://doi.org/10.1017/dmp.2020.252

Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC. Pathophysiology, transmission, diagnosis, and treatment of Coronavirus disease 2019 (COVID-19): a review. JAMA. 2020; 324(8): 782–93. DOI: https://doi.org/10.1001/jama.2020.12839

Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int. 2020; 142: 105832. DOI: https://doi.org/10.1016/j.envint.2020.105832

Cabrera-Tasayco FDP, Rivera-Carhuavilca JM, Atoche-Socola KJ, Peña-Soto C, Arriola-Guillén LE. Biosafety measures at the dental office after the appearance of COVID-19: a systematic review. Disaster Med Public Health Prep. 2020; 1–5. DOI: https://doi.org/10.1017/dmp.2020.269

Zhang W, Jiang X. Measures and suggestions for the prevention and control of the novel coronavirus in dental institutions. Front Oral Maxillofac Med. 2020; 2: 4. https://doi.org/10.21037/fomm.2020.02.01

Mattos FF, Pordeus IA. COVID-19: a new turning point for dental practice. Braz Oral Res. 2020; 34: e085. DOI: https://doi.org/10.1590/1807-3107bor-2020.vol34.0085

Izzetti R, Nisi M, Gabriele M, Graziani F. COVID-19 transmission in dental practice: brief review of preventive measures in Italy. J Dent Res. 2020; 99(9): 1030–8. DOI: https://doi.org/10.1177/0022034520920580

Vargas-Buratovic JP, Verdugo-Paiva F, Véliz-Paiva C, López-Tagle E, Ahumada-Salinas A, Ortuño-Borroto D. Recomendaciones odontológicas en la pandemia COVID-19: revisión narrativa. Medwave. 2020; 20(5): e7916. DOI: https://doi.org/10.5867/medwave.2020.05.7916

Araya-Salas C. Considerations for emergency dental care and measures preventive for COVID-19 (SARS-CoV 2). Int J Odontostomat. 2020; 14(3): 268–70. DOI: http://dx.doi.org/10.4067/S0718-381X2020000300268

Marui VC, Souto MLS, Rovai ES, Romito GA, Chambrone L, Pannuti CM. Efficacy of preprocedural mouthrinses in the reduction of microorganisms in aerosol: a systematic review. J Am Dent Assoc. 2019; 150(12): 1015-1026.e1. DOI: https://doi.org/10.1016/j.adaj.2019.06.024

Herrera D, Serrano J, Roldán S, Sanz M. Is the oral cavity relevant in SARS-CoV-2 pandemic? Clin Oral Investig. 2020; 24(8): 2925–30. DOI: https://doi.org/10.1007/s00784-020-03413-2

Adhikari G. Intuition on virology, epidemiology, pathogenesis, and control of COVID-19. Nov Res Microbiol J. 2020; 4(5): 955–67. DOI: https://dx.doi.org/10.21608/nrmj.2020.118446

Pastrian-Soto G. Bases genéticas y moleculares del COVID-19 (SARS-CoV-2): mecanismos de patogénesis y de respuesta inmune. Int J Odontostomatol. 2020; 14(3): 331–7. DOI: http://dx.doi.org/10.4067/S0718-381X2020000300331

Accinelli RA, Xu CMZ, Wang JJ, Yachachin-Chávez JM, Cáceres-Pizarro JA, Tafur-Bances KB et al. COVID-19: la pandemia por el nuevo virus SARS-CoV-2. Rev Peru Med Exp Salud Pública. 2020; 37(2): 302–11. DOI: http://dx.doi.org/10.17843/rpmesp.2020.372.5411

Chen Y, Guo Y, Pan Y, Joe Z. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020; 525(1): 135–40. DOI: https://doi.org/10.1016/j.bbrc.2020.02.071

Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020; 12. DOI: http://dx.doi.org/10.1038/s41368-020-0074-x

Cao W, Li T. COVID-19: towards understanding of pathogenesis. Cell Res. 2020; 30: 367–9. DOI: https://doi.org/10.1038/s41422-020-0327-4

Li Y, Ren B, Peng X, Hu T, Li J, Gong T et al. Saliva is a non-negligible factor in the spread of COVID-19. Mol Oral Microbiol. 2020; 35(4): 141–5. DOI: https://doi.org/10.1111/omi.12289

Badran Z, Gaudin A, Struillou X, Amador G, Soueidan A. Periodontal pockets: a potential reservoir for SARS-CoV-2?. Med Hypotheses. 2020; 143. DOI: https://doi.org/10.1016/j.mehy.2020.109907

Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581: 465–9. DOI: https://doi.org/10.1038/s41586-020-2196-x

Gerba CP. Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol. 2015; 81(2): 464–9. DOI: https://doi.org/10.1128/aem.02633-14

Popkin DL, Zilka S, Dimaano M, Fujioka H, Rackley C, Salata R et al. Cetylpyridinium chloride (cpc) exhibits potent, rapid activity against influenza viruses in vitro and in vivo. Pathog Immun. 2017; 2(2): 253-69. DOI: https://doi.org/10.20411/pai.v2i2.200

Baker N, Williams AJ, Tropsha A, Ekins S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm Res. 2020; 37(6). DOI: https://doi.org/10.1007/s11095-020-02842-8

Mukherjee PK, Esper F, Buchheit K, Arters K, Adkins I, Ghannoum MA et al. Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect Dis. 2017; 17. DOI: https://doi.org/10.1186/s12879-016-2177-8

O’Donnell VB, Thomas D, Stanton R, Maillard J-Y, Murphy RC, Jones SA et al. Potential role of oral rinses targeting the viral lipid envelope in SARS-CoV-2 infection. Function (Oxf). 2020; 1(1). DOI: https://doi.org/10.1093/function/zqaa002

Bibi S, Shah SA, Qureshi S, Siddiqui TR, Soomro IA, Ahmed W et al. Is chlorhexidine-gluconate superior than Povidone-Iodine in preventing surgical site infections? a multicenter study. J Pak Med Assoc. 2015; 65(11): 1197–201.

Sharafi SM, Ebrahimpour K, Nafez A. Environmental disinfection against COVID-19 in different areas of health care facilities: a review. Rev Environ Health. 2020. DOI: https://doi.org/10.1515/reveh-2020-0075

Vergara-Buenaventura A, Castro-Ruiz C. Use of mouthwashes against COVID-19 in dentistry. Br J Oral Maxillofac Surg. 2020; 58(8): 924–7. DOI: https://doi.org/10.1016/j.bjoms.2020.08.016

Hu C, Wang LL, Lin YQ, Liang HM, Zhou SY, Zheng F et al. Nanoparticles for the treatment of oral biofilms: current state, mechanisms, influencing factors, and prospects. Adv Healthc Mater. 2019; 8(24): e1901301. DOI: https://doi.org/10.1002/adhm.201901301

Caruso AA, Del Prete A, Lazzarino AI. Hydrogen peroxide and viral infections: a literature review with research hypothesis definition in relation to the current covid-19 pandemic. Med Hypotheses. 2020; 144: 109910. DOI: https://doi.org/10.1016/j.mehy.2020.109910

Wang MM, Lu M, Zhang CL, Wu X, Chen JX, Lv WW et al. Oxidative stress modulates the expression of toll-like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol Med Rep. 2018; 18(2): 1867–77. DOI: https://doi.org/10.3892/mmr.2018.9089

Bevacqua RJ, Perrone SV. COVID-19: relación entre enzima convertidora de angiotensina 2, sistema cardiovascular y respuesta inmune del huésped. Insufic C. 2020; 15(2): 34–51.

Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B. Transmission routes of 2019-nCoV and controls in dental practice. Int J Oral Sci. 2020; 12. DOI: http://dx.doi.org/10.1038/s41368-020-0075-9

Kirk-Bayley J, Sunkaraneni S, Challacombe S. The use of povidone iodine nasal spray and mouthwash during the current COVID-19 pandemic may protect healthcare workers and reduce cross infection. SSRN Electron J. 2020.

Tsuda S, Soutome S, Hayashida S, Funahara M, Yanamoto S, Umeda M. Topical povidone iodine inhibits bacterial growth in the oral cavity of patients on mechanical ventilation: a randomized controlled study. BMC Oral Health. 2020. DOI: https://dx.doi.org/10.1186%2Fs12903-020-1043-7

Parhar HS, Tasche K, Brody RM, Weinstein GS, O’Malley BW, Shanti RM et al. Topical preparations to reduce SARS-CoV-2 aerosolization in head and neck mucosal surgery. Head Neck. 2020; 42(6): 1268–72. DOI: https://doi.org/10.1002/hed.26200

Eggers M, Koburger-Janssen T, Eickmann M, Zorn J. In vitro bactericidal and virucidal efficacy of Povidone-Iodine gargle/mouthwash against respiratory and oral tract pathogens. Infect Dis Ther. 2018; 7(2): 249–59. DOI: https://doi.org/10.1007/s40121-018-0200-7

Bidra AS, Pelletier JS, Westover JB, Frank S, Brown SM, Tessema B. Comparison of in vitro inactivation of SARS CoV-2 with Hydrogen Peroxide and Povidone-Iodine oral antiseptic rinses. J Prosthodont. 2020; 29(7): 599–603. DOI: https://doi.org/10.1111/jopr.13220

Ge Z, Yang L, Xia J, Fu X , Zhang Y. Possible aerosol transmission of COVID-19 and special precautions in dentistry. J Zhejiang Univ Sci B. 2020; 21(5): 361–8. DOI: https://doi.org/10.1631/jzus.b2010010

Moosavi MS, Aminishakib P, Ansari M. Antiviral mouthwashes: possible benefit for COVID-19 with evidence-based approach. J Oral Microbiol. 2020; 12(1). DOI: https://dx.doi.org/10.1080%2F20002297.2020.1794363

Pedraza-Maquera KI, Lévano-Villanueva CJU. Efectividad de enjuagues bucales en el tratamiento dental durante la pandemia COVID-19. Rev Odontol Basadrina. 2020; 4(1): 48–53. DOI: https://doi.org/10.33326/26644649.2020.4.1.915

Yoon JG, Yoon J, Song JY, Yoon SY, Lim CS, Seong H et al. Clinical significance of a high SARS-CoV-2 viral load in the Saliva. J Korean Med Sci. 2020; 35(20): e195. DOI: https://doi.org/10.3346/jkms.2020.35.e195

Pereira LJ, Pereira CV, Murata RM, Pardi V, Pereira-Dourado SM. Biological and social aspects of Coronavirus Disease 2019 (COVID-19) related to oral health. Braz Oral Res. 2020; 34. DOI: https://doi.org/10.1590/1807-3107bor-2020.vol34.0041

Frank S, Capriotti J, Brown SM, Tessema B. Povidone-Iodine Use in sinonasal and oral cavities: a review of safety in the COVID-19 era. Ear Nose Throat J. 2020; 99(9): 586–93. DOI: https://doi.org/10.1177/0145561320932318

Martínez-Lamas L, Diz-Dios P, Pérez-Rodríguez MT, Del-Campo P, Cabrera-Alvargonzalez JJ, López-Domínguez AM et al. Is povidone-iodine mouthwash effective against SARS-CoV-2? first in vivo tests. Oral Dis. 2020. DOI: https://doi.org/10.1111/odi.13526

Tessema B, Frank S, Bidra A. SARS-CoV-2 Viral inactivation using low dose Povidone-Iodine Oral Rinse—immediate application for the prosthodontic practice. J Prosthodont. 2020; 29(6): 459. DOI: https://doi.org/10.1111/jopr.13207

Published

2021-09-23

How to Cite

Taboada-Granados, M. A., Colina-Neyra, E. M. ., & Ruiz-Ramirez, E. (2021). Relationship of the use of mouthwashes with the decrease in the viral load of SARS-CoV-2 in dental practice: topic review. Revista Facultad De Odontología Universidad De Antioquia, 33(2). Retrieved from https://revistas.udea.edu.co/index.php/odont/article/view/346257

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.