Fatigue failure of NiTi endodontic files: scoping review

Authors

DOI:

https://doi.org/10.17533/udea.rfo.v34n1a6

Keywords:

Endodontic File, Fatigue Failure, Systematic Literature Review, Nickel-titanium

Abstract

Introduction: Nickel-Titanium (NiTi) endodontic files are made of hyperelastic material with shape memory. However, these files suffer a sudden fracture during the endodontic treatment, which is considered an unfavorable prognosis. Many studies have been conducted to establish fatigue resistance focused on file brands and determine which is better. Although the most common failure mechanisms have been established for motorized endodontic files, the information is scattered, making it difficult to develop clear research trends. Methods: a scoping review was carried out using Scopus, Dimensions.ai, Web of Science, and Science Direct databases to answer screening questions related to the predominant fracture mechanism in NiTi files, test types, and equipment used for experimentation and to identify the most active authors.
Results: using the general search terms, 432 research papers were found, of which 75 were finally selected after eliminating duplicates and applying exclusion criteria. Conclusions: typical failure mechanisms for rotatory and reciprocating files were identified based on the panoramic review and bibliometric indicators. Also, the standard mechanical tests for endodontic files and the characteristics of their assemblies were summarized. The most active authors in the area and their nationality were tagged. Finally, gaps for future research are proposed to generate a comprehensive knowledge of NiTi file failure.

|Abstract
= 659 veces | PDF
= 225 veces| | TABLAS (ESPAÑOL (ESPAÑA))
= 0 veces| | FIGURAS (ESPAÑOL (ESPAÑA))
= 0 veces| | HTML (ESPAÑOL (ESPAÑA))
= 12 veces|

Downloads

Download data is not yet available.

Author Biographies

Yenny Marcela Orozco-Ocampo, Universidad Autónoma de Manizales

MSc, Mechanics and Production Department, Universidad Autónoma de Manizales, Colombia

César Augusto Álvarez-Vargas, Universidad Autónoma de Manizales

PhDc, Mechanics and Production Department, Universidad Autónoma de Manizales, Colombia

Francy Nelly Jiménez-García, Universidad Autónoma de Manizales

PhD, Physics and Mathematics Department, Universidad Autónoma de Manizales and Universidad Nacional de Colombia, Manizales, Colombia.

Daniel Escobar-Rincón, Universidad Autónoma de Manizales

PhD, Physics and Mathematics Department, Universidad Autónoma de Manizales and Universidad Nacional de Colombia, Manizales, Colombia.

Paola Ximena Jaramillo-Gil, Universidad Autónoma de Manizales

   DDS, Oral Health Department, Universidad Autónoma de Manizales, Manizales, Colombia.

References

Carvalho A, Freitas M, Reis L, Montalvão D, Fonte M. Rotary fatigue testing to determine the fatigue life of NiTi alloy wires: an experimental and numerical analisys. Procedia Struct Integr. 2016; 1: 34-41. DOI: https://doi.org/10.1016/j.prostr.2016.02.006

Marques Ferreira M, Rebelo D, Caramelo F, Carrilho E, Loureiro M. In vitro evaluation of wear and canal transportation using reciprocating instruments: RECIPROC® vs WaveOne® files. Rev Port Estomatol Med Dent e Cir Maxilofac. 2013; 54(3): 117-23. DOI: https://doi.org/10.1016/j.rpemd.2013.04.001

Duque JA, Bramante CM, Duarte MAH, Alcalde MP, Silva EJNL, Vivan RR. Cyclic fatigue resistance of Nickel-Titanium reciprocating instruments after simulated clinical use. J Endod. 2020; 46(11): 1771-5. DOI: https://doi.org/10.1016/j.joen.2020.08.010

Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990; 16(10): 498-504. DOI: https://doi.org/10.1016/s0099-2399(07)80180-4

Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A review of the various surface treatments of NiTi instruments. Iran Endod J. 2014; 9(4): 235-40.

Zinelis S, Darabara M, Takase T, Ogane K, Papadimitriou GD. The effect of thermal treatment on the resistance of nickel-titanium rotary files in cyclic fatigue. Oral Surgery Oral Med Oral Pathol Oral Radiol Endodontology. 2007; 103(6): 843-7. DOI: https://doi.org/10.1016/j.tripleo.2006.12.026

Barbosa FOG, Ponciano Gomes JAdaC, de Araújo MCP. Fractographic analysis of K3 nickel-titanium rotary instruments submitted to different modes of mechanical loading. J Endod. 2008; 34(8): 994-8. DOI: https://doi.org/10.1016/j.joen.2008.05.013

Inan U, Gonulol N. Deformation and fracture of Mtwo Rotary Nickel-Titanium instruments after clinical use. J Endod. 2009; 35(10): 1396-9. DOI: https://doi.org/10.1016/j.joen.2009.06.014

Pirani C, Cirulli PP, Chersoni S, Micele L, Ruggeri O, Prati C. Cyclic fatigue testing and metallographic analysis of nickel-titanium rotary instruments. J Endod. 2011; 37(7): 1013-6. DOI: https://doi.org/10.1016/j.joen.2011.04.009

Legrand V, Moyne S, Pino L, Chirani SA, Calloch S, Chevalier V, et al. Mechanical behavior of a NiTi endodontic file during insertion in an anatomic root canal using numerical simulations. J Mater Eng Perform. 2015; 24(12): 4941-7. DOI: http://dx.doi.org/10.1007/s11665-015-1799-0

Plotino G, Grande NM, Cordaro M, Testarelli L, Gambarini G. A review of cyclic fatigue testing of Nickel-Titanium rotary instruments. J Endod. 2009; 35(11): 1469-76. DOI: https://doi.org/10.1016/j.joen.2009.06.015

Cheung GSP. Instrument fracture: mechanisms, removal of fragments, and clinical outcomes. Endod Top. 2009; 16(1): 1-26. DOI: https://doi.org/10.1111/j.1601-1546.2009.00239.x

Ashrafi MJ, Arghavani J, Naghdabadi R, Auricchio F. A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects. J Intell Mater Syst Struct. 2015; 27(5): 608-24. DOI: https://doi.org/10.1177%2F1045389X15575085

Karamooz-Ravari MR, Dehghani R. The effects of shape memory alloys’ tension–compression asymmetryon NiTi endodontic files’ fatigue life. Proc Inst Mech Eng Part H J Eng Med. 2018; 232(5): 437-45. DOI: https://doi.org/10.1177/0954411918762020

Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med Res Methodol. 2018; 18.

Sucharew M, Macaluso M. Methods for research evidence synthesis: the scoping review approach. J Hosp Med. 2019; 14(7): 416-8. DOI: https://doi.org/10.12788/jhm.3248

Waltman L, Jan van Eck N. Citation-based clustering of publications using CitNetExplorer and VOSviewer.

Scientometrics. 2017; 111. DOI: https://doi.org/10.1007/s11192-017-2300-7

Dederich DN, ZAkariasen KL. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg Oral Med Oral Pathol. 1986; 61(2): 192-6. DOI: https://doi.org/10.1016/0030-4220(86)90186-6

Haïkel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary Nickel-Titanium endodontic instruments. J Endod. 1999; 25(6): 434-40. DOI: https://doi.org/10.1016/s0099-2399(99)80274-x

Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000; 26(3): 161-5. DOI: https://doi.org/10.1097/00004770-200003000-00008

Craveiro De Melo MC, De Azevedo Bahia MG, Buono VTL. Fatigue resistance of engine-driven rotary nickeltitanium endodontic instruments. J Endod. 2002; 28(11): 765-9. DOI: https://doi.org/10.1097/00004770-200211000-00005

Zinelis S, Margelos J. Failure mechanism of hedstroem endodontic files in vivo. J Endod. 2002; 28(6): 471-3. DOI: https://doi.org/10.1097/00004770-200206000-00014

Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod. 2002; 28(10): 716-20. DOI: https://doi.org/10.1097/00004770-200210000-00009

Bahia MGA, Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickeltitanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 101(5): 675-80. DOI: https://doi.org/10.1016/j.tripleo.2005.04.019

Lopes HP, Moreira EJL, Nelson Elias C, Andriola de Almeida R, Neves MS. Cyclic fatigue of protaper instruments. J Endod. 2007; 33(1): 55-7. DOI: https://doi.org/10.1016/j.joen.2006.09.003

Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of sodium hypochlorite on mechanical properties of K3 Nickel-Titanium rotary instruments. 2007; 33(8): 982-5. DOI: https://doi.org/10.1016/j.joen.2007.05.008

Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of previous angular deformation on flexural fatigue resistance of K3 Nickel – Titanium rotary instruments. 2007; 33(12): 1477-80. DOI: https://doi.org/10.1016/j.joen.2007.08.014

Johnson E, Lloyd A, Kuttler S, Namerow K. Comparison between a novel Nickel-Titanium alloy and 508 Nitinol on the cyclic fatigue life of profile 25/.04 rotary instruments. J Endod. 2008; 34(11): 1406-9. DOI: https://doi.org/10.1016/j.joen.2008.07.029

Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of electrochemical polishing on the mechanical properties of K3 Nickel-Titanium rotary instruments. J Endod. 2008; 34(12): 1533-6. DOI: https://doi.org/10.1016/j.joen.2008.08.023

Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of enginedriven rotary Nickel-Titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003-5. DOI: https://doi.org/10.1016/j.joen.2008.05.007

Wolle CFB, Vasconcellos MAZ, Hinrichs R, Becker AN, Barletta FB. The effect of argon and nitrogen ion implantation on Nickel-Titanium rotary instruments. J Endod. 2009; 35(11): 1558-62. DOI: https://doi.org/10.1016/j.joen.2009.07.023

Park SY, Cheung GSP, Yum J, Hur B, Park JK, Kim HC. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod. 2010; 36(7): 1200-4. DOI: https://doi.org/10.1016/j.joen.2010.02.016

Hof R, Perevalov V, Eltanani M, Zary R, Metzger Z. The Self-Adjusting File (SAF). Part 2: mechanical analysis. J Endod. 2010; 36(4): 691-6. DOI: https://doi.org/10.1016/j.joen.2009.12.028

Dederich DN, ZAkariasen KL. The effects of cyclical axial motion on rotary endodontic instrument fatigue. Oral Surg Oral Med Oral Pathol. 1986; 61(2): 192-6. DOI: https://doi.org/10.1016/0030-4220(86)90186-6

Haïkel Y, Serfaty R, Bateman G, Senger B, Allemann C. Dynamic and cyclic fatigue of engine-driven rotary Nickel-Titanium endodontic instruments. J Endod. 1999; 25(6): 434-40. DOI: https://doi.org/10.1016/s0099-2399(99)80274-x

Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod. 2000; 26(3): 161-5. DOI: https://doi.org/10.1097/00004770-200003000-00008

Craveiro De Melo MC, De Azevedo Bahia MG, Buono VTL. Fatigue resistance of engine-driven rotary nickeltitanium endodontic instruments. J Endod. 2002; 28(11): 765-9. DOI: https://doi.org/10.1097/00004770-200211000-00005

Zinelis S, Margelos J. Failure mechanism of hedstroem endodontic files in vivo. J Endod. 2002; 28(6): 471-3. DOI: https://doi.org/10.1097/00004770-200206000-00014

Kuhn G, Jordan L. Fatigue and mechanical properties of nickel-titanium endodontic instruments. J Endod. 2002; 28(10): 716-20. DOI: https://doi.org/10.1097/00004770-200210000-00009

Bahia MGA, Melo MCC, Buono VTL. Influence of simulated clinical use on the torsional behavior of nickeltitanium rotary endodontic instruments. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006; 101(5): 675-80. DOI: https://doi.org/10.1016/j.tripleo.2005.04.019

Lopes HP, Moreira EJL, Nelson Elias C, Andriola de Almeida R, Neves MS. Cyclic fatigue of protaper instruments. J Endod. 2007; 33(1): 55-7. DOI: https://doi.org/10.1016/j.joen.2006.09.003

Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of sodium hypochlorite on mechanical properties of K3 Nickel-Titanium rotary instruments. 2007; 33(8): 982-5. DOI: https://doi.org/10.1016/j.joen.2007.05.008

Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of previous angular deformation on flexural fatigue resistance of K3 Nickel – Titanium rotary instruments. 2007; 33(12): 1477-80. DOI: https://doi.org/10.1016/j.joen.2007.08.014

Johnson E, Lloyd A, Kuttler S, Namerow K. Comparison between a novel Nickel-Titanium alloy and 508 Nitinol on the cyclic fatigue life of profile 25/.04 rotary instruments. J Endod. 2008; 34(11): 1406-9. DOI: https://doi.org/10.1016/j.joen.2008.07.029

Barbosa FOG, Gomes JACP, de Araujo MCP. Influence of electrochemical polishing on the mechanical properties of K3 Nickel-Titanium rotary instruments. J Endod. 2008; 34(12): 1533-6. DOI: https://doi.org/10.1016/j.joen.2008.08.023

Gambarini G, Grande NM, Plotino G, Somma F, Garala M, De Luca M, et al. Fatigue resistance of enginedriven rotary Nickel-Titanium instruments produced by new manufacturing methods. J Endod. 2008; 34(8): 1003-5. DOI: https://doi.org/10.1016/j.joen.2008.05.007

Wolle CFB, Vasconcellos MAZ, Hinrichs R, Becker AN, Barletta FB. The effect of argon and nitrogen ion implantation on Nickel-Titanium rotary instruments. J Endod. 2009; 35(11): 1558-62. DOI: https://doi.org/10.1016/j.joen.2009.07.023

Park SY, Cheung GSP, Yum J, Hur B, Park JK, Kim HC. Dynamic torsional resistance of nickel-titanium rotary instruments. J Endod. 2010; 36(7): 1200-4. DOI: https://doi.org/10.1016/j.joen.2010.02.016

Hof R, Perevalov V, Eltanani M, Zary R, Metzger Z. The Self-Adjusting File (SAF). Part 2: mechanical analysis. J Endod. 2010; 36(4): 691-6. DOI: https://doi.org/10.1016/j.joen.2009.12.028

Moreira Braga LC, Faria Silva AC, Lopes Buono VT, de Azevedo Bahia MG. Impact of heat treatments on the fatigue resistance of different rotary nickel-titanium instruments. J Endod. 2014; 40(9): 1494-7. DOI: https://doi.org/10.1016/j.joen.2014.03.007

Sousa J, Basto J, Roseiro L, Messias A, dos Santos JM, Palma P. Avaliação da fadiga cíclica de 3 sistemas de limas utilizadas em instrumentação mecanizada. Rev Port Estomatol Med Dent e Cir Maxilofac. 2015; 56(4): 239-45. DOI: https://doi.org/10.1016/j.rpemd.2015.11.007

Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod. 2015; 41(4): 535-8. DOI: https://doi.org/10.1016/j.joen.2014.11.008

Shen Y, Coil JM, Mclean AGR, Hemerling DL, Haapasalo M. Defects in Nickel-Titanium instruments after clinical use. Part 5: single use from endodontic specialty practices. J Endod. 2009; 35(10): 1363-7. DOI: https://doi.org/10.1016/j.joen.2009.07.004

Pedulla E, Lo Savio F, Plotino G, Grande NM, Rapisarda S, Gambarini G, et al. Effect of cyclic torsional preloading on cyclic fatigue resistance of ProTaper Next and Mtwo nickel-titanium instruments. G Ital Endod. 2015; 29(1): 3-8. DOI: https://doi.org/10.1016/j.gien.2015.05.002

Carvalho A, Freitas M, Reis L, Montalvão D, Fonte M. Rotary fatigue testing machine to determine the fatigue life of NiTi alloy wires and endondontic files. Procedia Eng. 2015; 114: 500-5. DOI: https://doi.org/10.1016/j.proeng.2015.08.098

Uslu G, Özyürek T, İnan U. Comparison of cyclic fatigue resistance of ProGlider and One G Glide path files. J Endod. 2016; 42(10): 1555-8. DOI: https://doi.org/10.1016/j.joen.2016.07.012

Isidoro J, Martins RF. Calculation of stress intensity factors KI, KII and KIII of cracked components submitted to flexural and torsional loads. Procedia Eng. 2016; 160: 131-6. DOI: https://doi.org/10.1016/j.proeng.2016.08.872

Özyürek T, Uslu G, İnan U. A comparison of the cyclic fatigue resistance of used and new glide path files. J Endod. 2017; 43(3): 477-80. DOI: https://doi.org/10.1016/j.joen.2016.10.044

Chi CW, Li CC, Lin CP, Shin CS. Cyclic fatigue behavior of nickel–titanium dental rotary files in clinical simulated root canals. J Formos Med Assoc. 2017; 116(4): 306-12. DOI: https://doi.org/10.1016/j.jfma.2016.06.002

Lopes HP, Elias CN, Vieira MVB, Vieira VTL, De Souza LC, Dos Santos AL. Influence of surface roughness on the fatigue life of Nickel-Titanium rotary endodontic instruments. J Endod. 2016; 42(6): 965-8. DOI: https://doi.org/10.1016/j.joen.2016.03.001

Lo Savio F, Pedullà E, Rapisarda E, La Rosa G. Influence of heat-treatment on torsional resistance to fracture of nickel-titanium endodontic instruments. Procedia Struct Integr. 2016; 2: 1311-8. DOI: https://doi.org/10.1016/j.prostr.2016.06.167

Loios G, Martins RF, Ginjeira A, Dragoi M V, Buican G. Fatigue resistance of rotary endodontic files submitted to axial motion in multiplanar canals manufactured by 3D printing. Procedia Eng. 2016; 160: 117-22. DOI: https://doi.org/10.1016/j.proeng.2016.08.870

Peláez Acosta E, Damas Resende P, Faria da Cunha I, Sales Joviano É, Lopes Buono VT, de Azevedo Bahia MG. Influence of cyclic flexural deformation on the torsional resistance of controlled memory and conventional Nickel-titanium instruments. 2017; 43(4): 613-8. DOI: https://doi.org/10.1016/j.joen.2016.11.007

Dosanjh A, Paurazas S, Askar M. The effect of temperature on cyclic fatigue of Nickel-titanium rotary endodontic instruments. J Endod. 2017; 43(5): 823-6. DOI: https://doi.org/10.1016/j.joen.2016.12.026

Grande NM, Plotino G, Silla E, Pedullà E, DeDeus G, ambarini G, et al. Environmental temperature drastically affects flexural fatigue resistance of Nickel-titanium rotary files. J Endod. 2017; 43(7): 1157-60. DOI: https://doi.org/10.1016/j.joen.2017.01.040

Chi CW, Deng YL, Lee JW, Lin CP. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: thin film metallic glass coating. J Formos Med Assoc. 2017; 116(5): 373-9. DOI: https://doi.org/10.1016/j.jfma.2016.07.003

Ha J, Kwak SW, Sigurdsson A, Chang SW, Kim SK, Kim H. Stress generation during pecking motion of rotary Nickel-titanium instruments with different. 2017; 43(10): 1688-91. DOI: https://doi.org/10.1016/j.joen.2017.04.013

Chi CW, Lai EHH, Liu CY, Lin CP, Shin CS. Influence of heat treatment on cyclic fatigue and cutting efficiency of ProTaper Universal F2 instruments. J Dent Sci. 2017; 12(1): 21-6. DOI: https://doi.org/10.1016/j.jds.2016.06.001

Gündoğar M, Özyürek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium instruments. J Endod. 2017; 43(7): 1192-6. DOI: https://doi.org/10.1016/j.joen.2017.03.009

Azim AA, Tarrosh M, Azim KA, Piasecki L. Comparison between single-file rotary systems: part 2—the effect of length of the instrument subjected to cyclic loading on cyclic fatigue resistance. J Endod. 2018; 44(12): 1837-42. DOI: https://doi.org/10.1016/j.joen.2018.07.021

Iacono F, Pirani C, Generali L, Gatto MR, Gandolfi MG, Prati C. Cyclic fatigue resistance of Nickel-Titanium reciprocating instruments tested with an innovative kinematics. G Ital Endod. 2018; 32(1): 42-6. DOI: https://doi.org/10.1016/j.gien.2018.03.004

Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of torsional and fatigue preloading on hyflex EDM files. J Endod. 2018; 44(4): 643-7. DOI: https://doi.org/10.1016/j.joen.2017.12.002

Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A. Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated Nickel-titanium rotary instruments. J Endod. 2018; 44(10): 1563-6. DOI: https://doi.org/10.1016/j.joen.2018.07.009

Bhatt A, Rajkumar B. A comparative evaluation of cyclic fatigue resistance for different endodontic NiTi rotary files: an in-vitro study. J Oral Biol Craniofacial Res. 2019; 9(2): 119-21. DOI: https://doi.org/10.1016/j.jobcr.2018.12.003

Binous H, Bellagi A. Introducing nonlinear dynamics to chemical and biochemical engineering graduate students using MATHEMATICA©. Comput Appl Eng Educ. 2019; 27(1): 217-35. DOI: https://doi.org/10.1002/cae.22070

Barbosa IB, Scelza P, Pereira AMB, Ferreira FG, Bagueira R, Adeodato CSR, et al. Progressive structural deterioration of an endodontic instrument: a preliminary micro-computed tomography study. Eng Fail Anal. 2019; 104: 105-11. DOI: https://doi.org/10.1016/j.engfailanal.2019.05.029

Piasecki L, Makowka SR, Gambarini G. Anatomic two-dimensional and three-dimensional models for cyclic fatigue testing of endodontic instruments. Iran Endod J. 2020; 15(2): 100-5. DOI: https://doi.org/10.22037/iej.v15i2.27342

Miccoli G, Seracchiani M, Del Giudice A, Mazonni A, D’Angelo M, Bhandi S, et al. Fatigue resistance of two Nickel-Titanium rotary instruments before and after ex vivo root canal treatment. J Contemp Dent Pract. 2020; 21(7): 728-32. DOI: http://dx.doi.org/10.5005/jp-journals-10024-2875

Grande NM, Plotino G, Silla E, Pedullà E, DeDeus G, ambarini G, et al. Environmental temperature drastically affects flexural fatigue resistance of Nickel-titanium rotary files. J Endod. 2017; 43(7): 1157-60. DOI: https://doi.org/10.1016/j.joen.2017.01.040

Chi CW, Deng YL, Lee JW, Lin CP. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: thin film metallic glass coating. J Formos Med Assoc. 2017; 116(5): 373-9. DOI: https://doi.org/10.1016/j.jfma.2016.07.003

Ha J, Kwak SW, Sigurdsson A, Chang SW, Kim SK, Kim H. Stress generation during pecking motion of rotary Nickel-titanium instruments with different. 2017; 43(10): 1688-91. DOI: https://doi.org/10.1016/j.joen.2017.04.013

Chi CW, Lai EHH, Liu CY, Lin CP, Shin CS. Influence of heat treatment on cyclic fatigue and cutting efficiency of ProTaper Universal F2 instruments. J Dent Sci. 2017; 12(1): 21-6. DOI: https://doi.org/10.1016/j.jds.2016.06.001

Gündoğar M, Özyürek T. Cyclic fatigue resistance of OneShape, HyFlex EDM, WaveOne Gold, and Reciproc Blue Nickel-titanium instruments. J Endod. 2017; 43(7): 1192-6. DOI: https://doi.org/10.1016/j.joen.2017.03.009

Azim AA, Tarrosh M, Azim KA, Piasecki L. Comparison between single-file rotary systems: part 2—the effect of length of the instrument subjected to cyclic loading on cyclic fatigue resistance. J Endod. 2018; 44(12): 1837-42. DOI: https://doi.org/10.1016/j.joen.2018.07.021

Iacono F, Pirani C, Generali L, Gatto MR, Gandolfi MG, Prati C. Cyclic fatigue resistance of Nickel-Titanium

reciprocating instruments tested with an innovative kinematics. G Ital Endod. 2018; 32(1): 42-6. DOI: https://doi.org/10.1016/j.gien.2018.03.004

Shen Y, Tra C, Hieawy A, Wang Z, Haapasalo M. Effect of torsional and fatigue preloading on hyflex EDM files. J Endod. 2018; 44(4): 643-7. DOI: https://doi.org/10.1016/j.joen.2017.12.002

Alfawaz H, Alqedairi A, Alsharekh H, Almuzaini E, Alzahrani S, Jamleh A. Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated Nickel-titanium rotary instruments. J Endod. 2018; 44(10): 1563-6. DOI: https://doi.org/10.1016/j.joen.2018.07.009

Bhatt A, Rajkumar B. A comparative evaluation of cyclic fatigue resistance for different endodontic NiTi rotary files: an in-vitro study. J Oral Biol Craniofacial Res. 2019; 9(2): 119-21. DOI: https://doi.org/10.1016/j.jobcr.2018.12.003

Binous H, Bellagi A. Introducing nonlinear dynamics to chemical and biochemical engineering graduate students using MATHEMATICA©. Comput Appl Eng Educ. 2019; 27(1): 217-35. DOI: https://doi.org/10.1002/cae.22070

Barbosa IB, Scelza P, Pereira AMB, Ferreira FG, Bagueira R, Adeodato CSR, et al. Progressive structural deterioration of an endodontic instrument: a preliminary micro-computed tomography study. Eng Fail Anal. 2019; 104: 105-11. DOI: https://doi.org/10.1016/j.engfailanal.2019.05.029

Piasecki L, Makowka SR, Gambarini G. Anatomic two-dimensional and three-dimensional models for cyclic fatigue testing of endodontic instruments. Iran Endod J. 2020; 15(2): 100-5. DOI: https://doi.org/10.22037/iej.v15i2.27342

Miccoli G, Seracchiani M, Del Giudice A, Mazonni A, D’Angelo M, Bhandi S, et al. Fatigue resistance of two Nickel-Titanium rotary instruments before and after ex vivo root canal treatment. J Contemp Dent Pract. 2020; 21(7): 728-32. DOI: http://dx.doi.org/10.5005/jp-journals-10024-2875

Published

2022-09-06

How to Cite

Orozco-Ocampo, Y. M., Álvarez-Vargas, C. A., Jiménez-García, F. N., Escobar-Rincón, D., & Jaramillo-Gil, P. X. (2022). Fatigue failure of NiTi endodontic files: scoping review. Revista Facultad De Odontología Universidad De Antioquia, 34(1), 14–30. https://doi.org/10.17533/udea.rfo.v34n1a6