Properties of dental restorative biomaterials modified with essential oils: literature review

Authors

DOI:

https://doi.org/10.17533/udea.rfo.v37n2e356596

Keywords:

oils volatile, dental materials, products with antimicrobial action, dental bonding

Abstract

This review article thoroughly examines the key properties of dental restorative biomaterials modified with essential oils. By analyzing in vitro, in vivo, and clinical studies, the effectiveness of these biomaterials in crucial areas such as antimicrobial properties, compression resistance, bond strength, and cytotoxicity is confirmed. The results suggest transformative potential in restorative dentistry, highlighting improvements in infection prevention, improved mechanical properties, and biocompatible safety profiles. The discussion of future perspectives highlights an evolution towards personalization and the integration of advanced technologies, which could redefine clinical standards and significantly improve dental care.

|Abstract
= 118 veces | PDF (ESPAÑOL (ESPAÑA))
= 34 veces|

Downloads

Download data is not yet available.

Author Biographies

Diana Samantha Ravelo-Cuchani, Universidad Nacional Mayor de San Marcos

Estudiante de pregrado. Facultad de Odontología, Universidad Nacional Mayor de San Marcos, Lima, Perú

Rubí Esmeralda Sandoval-García, Universidad Nacional Mayor de San Marcos

Estudiante de pregrado. Facultad de Odontología, Universidad Nacional Mayor de San Marcos, Lima, Perú

Gabriela Araceli Campos-Hermoza, Universidad Nacional Mayor de San Marcos

Estudiante de pregrado. Facultad de Odontología, Universidad Nacional Mayor de San Marcos, Lima, Perú

Manuel Antonio Mattos-Vela, Universidad Nacional Mayor de San Marcos

Doctor en Estomatología. Profesor asociado, Facultad de Odontología, Universidad Nacional Mayor de San Marcos, Lima, Perú

References

Kobierska-Brzoza JM, Dobrzyński M, Fita KA, Bader-Orłowska D, Szymonowicz M. Currently recommended restorative materials in modern conservative dentistry. Polim Med. 2015; 45(1): 37-43.

Ramsey JT, Shropshire BC, Ngagy TR, Chambers KD, Li Y, Korach KS. Essential oils and health. Yale J Biol Med. 2020; 93(2): 291-305.

Bassolé IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Mol Basel Switz. 2012; 17(4): 3989-4006. DOI: https://doi.org/10.3390/molecules17043989

Ambrosio CMS, de Alencar SM, de Sousa RLM, Moreno AM, Da Gloria EM. Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind Crops Prod. 2017; 97(1): 128-36. DOI: https://doi.org/10.1016/j.indcrop.2016.11.045

Dagli N, Dagli R, Mahmoud RS, Baroudi K. Essential oils, their therapeutic properties, and implication in dentistry: a review. J Int Soc Prev Community Dent. 2015; 5(5): 335-40. DOI: https://doi.org/10.4103/2231-0762.165933

Haas AN, Wagner TP, Muniz FWMG, Fiorini T, Cavagni J, Celeste RK. Essential oils-containing mouthwashes for gingivitis and plaque: meta-analyses and meta-regression. J Dent. 2016; 55(1): 7–15. DOI: https://doi.org/10.1016/j.jdent.2016.09.001

Barszczewska-Rybarek I, Chladek G. Studies on the Curing Efficiency and Mechanical Properties of Bis-GMA and TEGDMA Nanocomposites Containing Silver Nanoparticles. Int J Mol Sci. 2018; 19(12): 3937. DOI: https://doi.org/10.3390/ijms19123937

Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, et al. Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials (Basel). 2018; 11(6): 1031. DOI: https://doi.org/10.3390/ma11061031

Lukomska-Szymanska M, Zarzycka B, Grzegorczyk J, Sokolowski K, Poltorak K, Sokolowski J, et al. Antibacterial properties of calcium fluoride-based composite materials: in vitro study. Biomed Res Int. 2016. DOI: https://doi.org/10.1155/2016/1048320

Drzewiecka K, Kleczewska J, Krasowski M, Sokolowski J, Lapinska B. Mechanical properties of composite material modified with amorphous calcium phosphate. J Achiev Mater Manuf Eng. 2016; 74(1): 22-8. DOI: https://doi.org/10.5604/17348412.1225754

Szram A, Sokolowski J, Nowak J, Domarecka M, Lukomska-Szymanska M. Mechanical properties of composite material modified with essential oil. Inż Madre. 2017; 1(2): 49–53. DOI: https://doi.org/10.15199/28.2017.2.8

Moalic E, Gestalin A, Quinio D, Gest PE, Zerilli A, Le Flohic AM. The extent of oral fungal flora in 353 students and possible relationships with dental caries. Caries Res. 2001; 35(2): 149-55. DOI: https://doi.org/10.1159/000047447

Nikawa H, Yamashiro H, Makihira S, Nishimura M, Egusa H, Furukawa M, et al. In vitro cariogenic potential of Candida albicans. Mycoses. 2003; 46(11-12): 471-8. DOI: https://doi.org/10.1046/j.0933-7407.2003.00888.x

Xiao S, Cui P, Shi W, Zhang Y. Identification of essential oils with activity against stationary phase Staphylococcus aureus. BMC Complement Med Ther. 2020; 20(1): 99. DOI: https://doi.org/10.1186/s12906-020-02898-4

Lapinska B, Szram A, Zarzycka B, Grzegorczyk J, Hardan L, Sokolowski J, et al. An in vitro study on the antimicrobial properties of essential oil modified resin composite against oral pathogens. Materials (Basel). 2020; 13(19): 4383. DOI: https://doi.org/10.3390/ma13194383

Nunes JMFF, Farias IAP, Vieira CA, Ribeiro TM, Sampaio FC, Menezes VA. Antimicrobial activity and toxicity of glass ionomer cement containing an essential oil. Braz J Med Biol Res. 2020; 53(12): e9468. DOI: https://doi.org/10.1590/1414-431X20209468

Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J. 2009; 28(1): 11-9. DOI: https://doi.org/10.4012/dmj.28.11

Fani M, Kohanteb J. In vitro antimicrobial activity of thymus vulgaris essential oil against major oral pathogens. J Evid Based Complementary Altern Med. 2017; 22(4): 660-6. DOI: https://doi.org/10.1177/2156587217700772

Camarda L, Dayton T, Di Stefano V, Pitonzo R, Schillaci D. Chemical composition and antimicrobial activity of some oleogum resin essential oils from Boswellia spp. (Burseraceae). Ann Chim. 2007; 97(9): 837-44. DOI: https://doi.org/10.1002/adic.200790068

Horiuchi K, Shiota S, Hatano T, Yoshida T, Kuroda T, Tsuchiya T. Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol Pharm Bull. 2007; 30(6): 1147-9. DOI: https://doi.org/10.1248/bpb.30.1147

Yaseen SN, Taqa AA, Al-Khatib AR. The effect of incorporation Nano Cinnamon powder on the shear bond of the orthodontic composite (an in vitro study). J Oral Biol Craniofac Res. 2020; 10(2): 128–34. DOI: https://doi.org/10.1016/j.jobcr.2020.03.008

Almeida Lde F, Paula JF, Almeida RV, Williams DW, Hebling J, Cavalcanti YW. Efficacy of citronella and cinnamon essential oils on Candida albicans biofilms. Acta Odontol Scand. 2016; 74(5): 393-8. DOI: https://doi.org/10.3109/00016357.2016.1166261

Sherief DI, Fathi MS, Abou El Fadl RK. Antimicrobial properties, compressive strength and fluoride release capacity of essential oil-modified glass ionomer cements-an in vitro study. Clin Oral Investig. 2021;25(4):1879–1888. DOI: https://doi.org/10.1007/s00784-020-03493-0

Zhou S, Deng Ch, Liu H, Sun Y, Zhang Y. Investigating the antibacterial activity of thyme oil/TiO₂ modified resins against oral pathogenic bacteria. Alex Eng J. 2024; 89: 195-201. DOI: https://doi.org/10.1016/j.aej.2024.01.041

Sienkiewicz M, Łysakowska M, Denys P, Kowalczyk E. The antimicrobial activity of thyme essential oil against multidrug resistant clinical bacterial strains. Microb Drug Resist. 2012; 18(2): 137–48. DOI: https://doi.org/10.1089/mdr.2011.0080

Gao S, Liu G, Li J, Chen J, Li L, Li Z, et al. Antimicrobial activity of lemongrass essential oil (Cymbopogon flexuosus) and its active component citral against dual-species biofilms of Staphylococcus aureus and candida species. Front Cell Infect Microbiol. 2020; 10: 603858. DOI: https://doi.org/10.3389/fcimb.2020.603858

Bellis CA, Nobbs AH, O'Sullivan DJ, Holder JA, Barbour ME. Glass ionomer cements functionalised with a concentrated paste of chlorhexidine hexametaphosphate provides dose-dependent chlorhexidine release over at least 14 months. J Dent. 2016; 45: 53–8. DOI: https://doi.org/10.1016/j.jdent.2015.12.009

Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens. Braz J Med Biol Res. 2007; 40(3): 349–56. DOI: https://doi.org/10.1590/S0100-879X2007000300010

Silva S, Alves N, Silva P, Vieira T, Maciel P, Castellano LR, et al. Antibacterial activity of rosmarinus officinalis, zingiber officinale, citrus aurantium bergamia, and copaifera officinalis alone and in combination with calcium hydroxide against enterococcus faecalis. BioMed Res Int. 2019; 2(7): 81-9. DOI: https://doi.org/10.1155/2019/8129439

Cosan G, Ozverel CS, Yigit Hanoglu D, Baser KHC, Tunca YM. Evaluation of antibacterial and antifungal effects of calcium hydroxide mixed with two different essential oils. Molecules. 2022; 27(9): 2635. DOI: https://doi.org/10.3390/molecules27092635

Kiliç T. Analysis of essential oil composition of Thymbra spicata var. spicata: antifungal, antibacterial and antimycobacterial activities. Z Naturforschung C J Biosci. 2006; 61(5): 324-8. DOI: https://doi.org/10.1515/znc-2006-5-604

Guandalini Cunha B, Duque C, Sampaio Caiaffa K, Massunari L, Araguê Catanoze I, Dos Santos DM, et al. Cytotoxicity and antimicrobial effects of citronella oil (Cymbopogon nardus) and commercial mouthwashes on S. aureus and C. albicans biofilms in prosthetic materials. Arch Oral Bio. 2020; 109. DOI: https://doi.org/10.1016/j.archoralbio.2019.104577

Sheorain J, Mehra M, Thakur R, Grewal S, Kumari S. In vitro anti-inflammatory and antioxidant potential of thymol loaded bipolymeric (tragacanth gum/chitosan) nanocarrier. Int J Biol Macromol. 2019; 125: 1069-74. DOI: https://doi.org/10.1016/j.ijbiomac.2018.12.095

Yousefi M, Hoseini SM, Vatnikov YA, Nikishov AA, Kulikov EV. Thymol as a new anesthetic in common carp (Cyprinus carpio): efficacy and physiological effects in comparison with eugenol. Aquaculture. 2018; 495: 376-83. DOI: https://doi.org/10.1016/j.aquaculture.2018.06.022

Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod. 2014; 62: 250–64. DOI: https://doi.org/10.1016/j.indcrop.2014.05.055

Ochoa-Velasco CE, Navarro-Cruz AR, Vera-López O, Palou E, Avila-Sosa R. Growth modeling to control ( in vitro ) Fusarium verticillioides and Rhizopus stolonifer with thymol and carvacrol. Rev Argent Microbiol. 2018; 50(1): 70-4. DOI: http://dx.doi.org/10.1016/j.ram.2016.11.010

Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001; 48(48 Suppl): 5-16. DOI: https://doi.org/10.1093/jac/48.suppl_1.5

Elshikh M, Ahmed S, Funston S, Dunlop P, McGaw M, Marchant R, et al. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett. 2016; 38(6): 1015-9. DOI: https://doi.org/10.1007/s10529-016-2079-2

Botelho MA, Nogueira NAP, Bastos GM, Fonseca SGC, Lemos TLG, Matos FJA, et al. Antimicrobial activity of the essential oil from Lippia sidoides carvacrol and thymol againts oral pathogens. Braz J Med Biol Res. 2007; 40(3): 349–56. DOI: https://doi.org/10.1590/S0100-879X2007000300010

Khan ST, Khan M, Ahmad J, Wahab R, Abd-Elkader OH, Musarrat J, et al. Thymol and carvacrol induce autolysis, stress, growth inhibition and reduce the biofilm formation by Streptococcus mutans. AMB Express. 2017; 7(1): 49. DOI: https://doi.org/10.1186/s13568-017-0344-y

Yesilyurt C, Er K, Tasdemir T, Buruk K, Celik D. Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper Dent. 2009; 34(1): 18-23. DOI: https://doi.org/10.2341/08-30

Hahnel S, Ionescu AC, Cazzaniga G, Ottobelli M, Brambilla E. Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties. J Dent. 2017; 60: 14-24. DOI: http://dx.doi.org/doi:10.1016/j.jdent.2017.02.005

Baudin M, Cinquin B, Sclavi B, Pareau D, Lopes F. Understanding the fundamental mechanisms of biofilms development and dispersal: BIAM (Biofilm Intensity and Architecture Measurement), a new tool for studying biofilms as a function of their architecture and fluorescence intensity. J Microbiol Methods. 2017; 140: 47-57. DOI: https://doi.org/10.1016/j.mimet.2017.06.021

Moon S, Kim H, Cha J. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch Oral Biol. 2011; 56(9): 907-16. DOI: https://doi.org/10.1016/j.archoralbio.2011.02.005

Cid-Chevecich C, Müller-Sepúlveda A, Jara JA, López-Muñoz R, Santander R, Budini M, et al. Origanum vulgare L. essential oil inhibits virulence patterns of Candida spp. and potentiates the effects of fluconazole and nystatin in vitro. BMC Complement Med Ther. 2022; 22: 39. DOI: https://doi.org/10.1186/s12906-022-03518-z

Marinković J, Ćulafić DM, Nikolić B, Đukanović S, Marković T, Tasić G, et al. Antimicrobial potential of irrigants based on essential oils of Cymbopogon martinii and Thymus zygis towards in vitro multispecies biofilm cultured in ex vivo root canals. Arch Oral. 2020; 117: 104-42. DOI: https://doi.org/10.1016/j.archoralbio.2020.104842

Miladi H, Zmantar T, Kouidhi B, Al Qurashi YMA, Bakhrouf A, Chaabouni Y, et al. Synergistic effect of eugenol, carvacrol, thymol, p-cymene and γ-terpinene on inhibition of drug resistance and biofilm formation of oral bacteria. Microb Pathog. 2017; 112: 156-63. DOI: https://doi.org/10.1016/j.micpath.2017.09.057

Rota MC, Herrera A, Martínez RM, Sotomayor JA, Jordán MJ. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control. 2008; 19(7): 681-7. DOI: https://doi.org/10.1016/j.foodcont.2007.07.007

Marinković J, Bošković M, Tasić G, Vasilijević B, Marković D, Marković T, et al. Cymbopogon martinii essential oil nanoemulsions: physico-chemical characterization, antibacterial and antibiofilm potential against Enterococcus faecalis. Ind Crops Prod. 2022; 18(Part B): 115-28. DOI: https://doi.org/10.1016/j.indcrop.2022.115478

Balhaddad AA, AlSheikh RN. Effect of eucalyptus oil on Streptococcus mutans and Enterococcus faecalis growth. BDJ Open. 2023; 9(1): 1-5. DOI: https://doi.org/10.1038/s41405-023-00154-8

Merghni A, Ben Nejma M, Dallel I, Tobji S, Ben Amor A, Janel S, et al. High potential of adhesion to biotic and abiotic surfaces by opportunistic Staphylococcus aureus strains isolated from orthodontic appliances. Microb Pathog. 2016; 91(8): 61-7. DOI: https://doi.org/10.1016/j.micpath.2015.11.009

Myszka K, Schmidt MT, Majcher M, Juzwa W, Olkowicz M, Czaczyk K. Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. Int Biodeterior Biodegrad. 2016; 114(8): 252-9. DOI: https://doi.org/10.1016/j.ibiod.2016.07.006

Manrique Y, Gibis M, Schmidt H, Weiss J. Influence of application sequence and timing of eugenol and lauric arginate (LAE) on survival of spoilage organisms. Food Microbiol. 2017; 64 :210-8. DOI: https://doi.org/10.1016/j.fm.2017.01.002

Miladi H, Zmantar T, Kouidhi B, Chaabouni Y, Mahdouani K, Bakhrouf A, et al. Use of carvacrol, thymol, and eugenol for biofilm eradication and resistance modifying susceptibility of Salmonella enterica serovar Typhimurium strains to nalidixic acid. Microb Pathog. 2017; 104(9): 56-63. DOI: https://doi.org/10.1016/j.micpath.2017.01.012

Kwieciński J, Eick S, Wójcik K. Effects of tea tree (Melaleuca alternifolia) oil on Staphylococcus aureus in biofilms and stationary growth phase. Int J Antimicrob Agents. 2009; 33(4): 343-7. DOI: https://doi.org/10.1016/j.ijantimicag.2008.08.028

Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001; 9(1): 34-9. DOI: https://doi.org/10.1016/S0966-842X(00)01913-2

Polaquini S, Svidzinski T, Kemmelmeier C, Gasparetto A. Effect of aqueous extract from Neem (Azadirachta indica A. Juss) on hydrophobicity, biofilm formation and adhesion in composite resin by Candida albicans. Arch Oral Biol. 2006; 51(6): 482-90. DOI: https://doi.org/10.1016/j.archoralbio.2005.11.007

Sandasi M, Leonard CM, Viljoen AM. The effect of five common essential oil components on Listeria monocytogenes biofilms. Food Control. 2008; 19(11): 1070-5. DOI: https://doi.org/10.1016/j.foodcont.2007.11.006

Benkhaira N, Zouine N, Fadil M, Ibnsouda Koraichi S, El Hachlafi N, Jeddi M, et al. Application of mixture design for the optimum antibacterial action of chemically-analyzed essential oils and investigation of the antiadhesion ability of their optimal mixtures on 3D printing material. Bioprinting. 2023; 34: 299-302. DOI: https://doi.org/10.1016/j.bprint.2023.e00299

Published

2025-10-01

How to Cite

Ravelo-Cuchani, D. S., Sandoval-García, R. E., Campos-Hermoza, G. A., & Mattos-Vela, M. A. (2025). Properties of dental restorative biomaterials modified with essential oils: literature review. Revista Facultad De Odontología Universidad De Antioquia, 37(2), e356596. https://doi.org/10.17533/udea.rfo.v37n2e356596