Effects of Coca-Cola® drink on hard dental tissues, restorative materials and orthodontic appliances: state of the art

Authors

DOI:

https://doi.org/10.17533/udea.rfo.v37n1e357892

Keywords:

Coca-Cola®, carbonated beverages, dental enamel, dental materials, orthodontics

Abstract

The objective of this article was to present the state of the art on the effects of Coca-Cola® drink on hard dental tissues, restorative materials, and orthodontic appliances. Searches were conducted in PubMed, Scopus, and EbscoHost databases to identify relevant studies on this issue. The inclusion criteria were: studies published in English within the last 15 years (2010-2025) that assessed the effects of Coca-Cola® on hardness, nanoindentation, flexural strength, fracture toughness, surface roughness, solubility, corrosion, changes in surface micromorphology, chemical composition of hard dental tissues and/or restorative materials and/or orthodontic appliances, comparing the results with artificial saliva, distilled water, or other solutions/beverages. Excessive exposure to Coca-Cola® leads to a reduction in the elasticity modulus and hardness and promotes enamel demineralization. Furthermore, it increases roughness in enamel and dentin and generates erosive effects on root cementum. Prolonged contact with the beverage diminishes the microhardness and flexural strength of some composite resins. Similarly, it increases roughness and surface degradation of these resin-based materials. Glass ionomer cements, particularly conventional ones, are highly susceptible to the erosive action of Coca-Cola®, whereas ceramic, hybrid, and resin-based CAD/CAM materials appear to be highly resistant. In the context of orthodontics, exaggerated exposure to Coca-Cola® increases the release of metallic ions/risk of corrosion of appliances and decreases the strength of orthodontic elastic chains. In conclusion, the studies showed that excessive consumption of Coca-Cola® drink could generate detrimental effects on hard dental tissues, restorative materials, and orthodontic appliances.

|Abstract
= 107 veces | PDF (ESPAÑOL (ESPAÑA))
= 149 veces|

Downloads

Author Biographies

Cristhian Camilo Madrid-Troconis, Universidad Estatal de Campinas

Maestría y Doctorado en Materiales Dentales, Departamento de Odontología Restauradora, Universidad Estatal de Campinas, FOP-Unicamp, São Paulo, Brasil. Docente del Departamento de Rehabilitación Oral, Facultad de Odontología, Universidad de Cartagena, Colombia

Samantha Molina-Pérez, Universidad de Cartagena

Odontóloga. Residente de la especialización en Ortodoncia, Facultad de Odontología, Universidad de Cartagena, Colombia

Maria Luisa Redondo-Rico, Universidad de Cartagena

Odontóloga, Facultad de Odontología, Universidad de Cartagena, Colombia

References

Giacaman RA. Sugars and beyond: the role of sugars and the other nutrients and their potential impact on caries. Oral Dis. 2018; 24(7): 1185-97. DOI: https://doi.org/10.1111/odi.12778

Reddy A, Norris DF, Momeni SS, Waldo B, Ruby JD. The pH of beverages in the United States. J Am Dent Assoc. 2016; 147(4): 255-63. DOI: https://doi.org/10.1016/j.adaj.2015.10.019

Silva JGVC, Martins JPG, de Sousa EBG, Fernandes NLS, Meira IA, Sampaio FC et al. Influence of energy drinks on enamel erosion: in vitro study using different assessment techniques. J Clin Exp Dent. 2021; 13(11): e1076-e1082. DOI: https://doi.org/10.4317/jced.57788

Li P, Oh C, Kim H, Chen-Glasser M, Park G, Jetybayeva A et al. Nanoscale effects of beverages on enamel surface of human teeth: an atomic force microscopy study. J Mech Behav Biomed Mater. 2020; 110: 103930. DOI: https://doi.org/10.1016/j.jmbbm.2020.103930

Mitic AD, Gasic JZ, Barac RG, Radenkovic GS, Sunaric SM, Popovic JZ et al. Ultrastructural changes in the cemento-enamel junction caused by acidic beverages: an in vitro study. Microsc Res Tech. 2020; 83(2): 91-8. DOI: https://doi.org/10.1002/jemt.23392

O'Toole S, Mullan F. The role of the diet in tooth wear. Br Dent J. 2018; 224(5): 379-83. DOI: https://doi.org/10.1038/sj.bdj.2018.127

Pirolo R, Mondelli RFL, Correr GM, Gonzaga CC, Furuse AY. Effect of coffee and a cola-based soft drink on the color stability of bleached bovine incisors considering the time elapsed after bleaching. J Appl Oral Sci. 2014; 22(6): 534-40. DOI: https://doi.org/10.1590/1678-775720130578

Al Wadei MHD. Comparison of the degree of staining of computer-aided design-computer-aided manufacture (CAD-CAM) ceramic veneers by green tea, coffee, and Coca-Cola Using a digital spectrophotometer. Med Sci Monit. 2023; 29: e939341. DOI: https://doi.org/10.12659/msm.939341

Fathima JN, Hashir MMJ, Padmanabhan K. Spectrophotometric evaluation of color stability of composite resin after exposure to cold drinks: an in vitro study. J Conserv Dent Endod. 2024; 27(2): 195-9. DOI: https://doi.org/10.4103/jcde.jcde_230_23

Šimunović L, Blagec T, Vrankić A, Meštrović S. Color stability of orthodontic ceramic brackets and adhesives in potentially staining beverages-in vitro study. Dent J (Basel). 2022; 10(7): 115. DOI: https://doi.org/10.3390/dj10070115

Lutovac M, Popova OV, Macanovic G, Kristina R, Lutovac B, Ketin S et al. Testing the effect of aggressive beverage on the damage of enamel structure. Open Access Maced J Med Sci. 2017; 5(7): 987-93. DOI: https://doi.org/10.3889/oamjms.2017.180

Kato MT, Buzalaf MAR. Iron supplementation reduces the erosive potential of a cola drink on enamel and dentin in situ. J Appl Oral Sci. 2012; 20(3): 318-22. DOI: https://doi.org/10.1590/s1678-77572012000300004

Meenakshi CM, Sirisha K. Surface quality and color stability of posterior composites in acidic beverages. J Conserv Dent. 2020; 23(1): 57-61. DOI: https://doi.org/10.4103/jcd.jcd_291_19

Dahri WM, Kumar N, Altaf N, Mughal W, Zafar MS. Mechanical and biomimetic characteristics of bulk-fill resin dental composites following exposure in a simulated acidic oral environment. Biomimetics (Basel). 2023; 8(1): 19. DOI: https://doi.org/10.3390/biomimetics8010019

Mestrener LR, Mestrener SR, Lemos CAA, Briso ALF, Sundfeld RH, Fagundes TC. Repair bond strength and degradation of glass ionomer cements after mechanical and chemical challenges. Braz J Oral Sci. 2020; 19: e201715. DOI: https://doi.org/10.20396/bjos.v19i0.8659174

Elraggal A, Afifi R, Abdelraheem I. Effect of erosive media on microhardness and fracture toughness of CAD-CAM dental materials. BMC Oral Health. 2022; 22(1): 191. DOI: https://doi.org/10.1186/s12903-022-02230-1

Scotti N, Ionescu A, Comba A, Baldi A, Brambilla E, Vichi A et al. Influence of Low-pH Beverages on the Two-Body Wear of CAD/CAM Monolithic Materials. Polymers (Basel). 2021; 13(17): 2915. DOI: https://doi.org/10.3390/polym13172915

Torres-Rosas R, Torres-Gómez N, Camero-Leal JA, Jurado C, López-Ravelo H, Argueta-Figueroa L. Force decay and elongation of orthodontic elastomeric chains exposed to different beverages common in the diet: an in vitro study. Dent Med Probl. 2023; 60(3): 413-20. DOI: https://doi.org/10.17219/dmp/148052

DA P, Angel LS, Chaudhari PK, Yadav SC, Duggal R. Quantitative and qualitative analysis of metallic ion release of orthodontic brackets in three different pH conditions: an invitro study. J Oral Biol Craniofac Res. 2024; 14(4): 435-40. DOI: https://doi.org/10.1016/j.jobcr.2024.05.001

Saha A, Kim Y, Kim KK, Kim YJ, Byon HR, Hong S. Nanoscale study on noninvasive prevention of dental erosion of enamel by silver diamine fluoride. Biomater Res. 2024; 28: 0103. DOI: https://doi.org/10.34133/bmr.0103

Fujii M, Kitasako Y, Sadr A, Tagami J. Roughness and pH changes of enamel surface induced by soft drinks in vitro-applications of stylus profilometry, focus variation 3D scanning microscopy and micro pH sensor. Dent Mater J. 2011; 30(3): 404-10. DOI: https://doi.org/10.4012/dmj.2010-204

Barac R, Gasic J, Trutic N, Sunaric S, Popovic J, Djekic P et al. Erosive effect of different soft drinks on enamel surface in vitro: application of stylus profilometry. Med Princ Pract. 2015; 24(5): 451-7. DOI: https://doi.org/10.1159/000433435

Louzon Y, Vaknin I, Wolfoviz-Zilberman A, Sharon E, Houri-Haddad Y, Beyth N. In vitro effect of Streptococcus mutans biofilm produced in sugar-free Coca-Cola on enamel. Int Dent J. 2025; 75(2): 752-60. DOI: https://doi.org/10.1016/j.identj.2024.05.008

Hammad SM, Enan ET. In vivo effects of two acidic soft drinks on shear bond strength of metal orthodontic brackets with and without resin infiltration treatment. Angle Orthod. 2013; 83(4): 648-52. DOI: https://doi.org/10.2319/091512-737.1

Sari ME, Erturk AG, Koyuturk AE, Bekdemir Y. Evaluation of the effect of food and beverages on enamel and restorative materials by SEM and Fourier transform infrared spectroscopy. Microsc Res Tech. 2014; 77(1): 79-90. DOI: https://doi.org/10.1002/jemt.22315

Pasha A, Sindhu D, Nayak RS, Mamatha J, Chaitra KR, Vishwakarma S. The effect of two soft drinks on bracket bond strength and on intact and sealed enamel: an in vitro study. J Int Oral Health. 2015; 7(Suppl 2): 26-33.

Jablonski-Momeni A, Hanselmann F, Bottenberg P, Korbmacher-Steiner H. Detection of erosive changes on smooth surfaces with and without orthodontic brackets using an intraoral scanner-an in vitro study. Diagnostics (Basel). 2023; 13(20): 3232. DOI: https://doi.org/10.3390/diagnostics13203232

Maladkar SR, Yadav P, Muniraja ANA, Uchil GS, George LV, Augustine D, et al. Erosive effect of acidic beverages and dietary preservatives on extracted human teeth-an in vitro analysis. Eur J Dent. 2022; 16(4): 919-29. DOI: https://doi.org/10.1055/s-0041-1742131

de Araujo LC, Amorim AA, Vivanco RG, de Arruda CNF, Bikker FJ, Pires-de-Souza FCP. The effect of Phytosphingosine and bioactive glass-ceramics in preventing dental enamel erosion. Braz Dent J. 2023; 34(2): 88-96. DOI: https://doi.org/10.1590/0103-6440202304904

Khamverdi Z, Vahedi M, Abdollahzadeh S, Ghambari MH. Effect of a common diet and regular beverage on enamel erosion in various temperatures: an in-vitro study. J Dent (Tehran). 2013; 10(5): 411-6.

Honório HM, Rios D, Santos CF, Buzalaf MAR, Machado MAAM. Influence of dental plaque on human enamel erosion: in situ / ex vivo study. Oral Health Prev Dent. 2010; 8(2): 179-84.

Kim YH, Lee JY, Jeong MK. The erosion of the tooth enamel and the cementum by carbonate beverage. Int J Clin Prev Dent. 2011; 7(1): 1-13.

Nakamura M, Kitasako Y, Nakashima S, Sadr A, Tagami J. Impact of toothpaste on abrasion of sound and eroded enamel: an in vitro white light interferometer study. Am J Dent. 2015; 28(5): 268-72.

Jamwal N, Rao A, Shenoy R, Pai M, Ks A, Br A. Effect of whitening toothpaste on surface roughness and microhardness of human teeth: a systematic review and meta-analysis. F1000Res. 2022; 11: 22. DOI: https://doi.org/10.12688/f1000research.76180.3

Tomás DBM, Pecci-Lloret MP, Guerrero-Gironés J. Effectiveness and abrasiveness of activated charcoal as a whitening agent: a systematic review of in vitro studies. Ann Anat. 2023; 245: 151998. DOI: https://doi.org/10.1016/j.aanat.2022.151998

Wiktorski CA, Michelogiannakis D, Rossouw PE, Javed F. The Effect of charcoal-based dentifrice and conventional whitening toothpaste on the color stability and surface roughness of composite resin: a systematic review of in vitro studies. Dent J (Basel). 2024; 12(3): 58. DOI: https://doi.org/10.3390/dj12030058

Haghgou EH, Haghgoo R, Roholahi MR, Ghorbani Z. Effect of casein phosphopeptide-amorphous calcium phosphate and three calcium phosphate on enamel microhardness. J Contemp Dent Pract. 2017; 18(7): 583-6. DOI: https://doi.org/10.5005/jp-journals-10024-2088

Colombo M, Dagna A, Moroni G, Chiesa M, Poggio C, Pietrocola G. Effect of different protective agents on enamel erosion: an in vitro investigation. J Clin Exp Dent. 2019; 11(2): 113-8. DOI: https://doi.org/10.4317/jced.55278

Shah A, Hiremath H, Ojha K, Khandelwal S, Patidar S, Trivedi S. A comparative evaluation of the effect of alcoholic and non-alcoholic beverages on tooth enamel surface pretreated with β-tricalcium phosphate, bioactive glass and amine fluoride: an in vitro study. Med Pharm Rep. 2023; 96(4): 420-6. DOI: https://doi.org/10.15386/mpr-2465

Torsakul P, Rirattanapong P, Prapansilp W, Vongsavan K. Remineralization effect of calcium glycerophosphate in fluoride mouth rinse on eroded human enamel: an in vitro study. J Int Soc Prev Community Dent. 2023; 13(4): 327-32. DOI: https://doi.org/10.4103/jispcd.jispcd_23_23

Moras CG, Acharya SR, Adarsh UK, Unnikrishnan VK. Regenerative biomineralization potential of commercially available remineralizing agents as a preventive treatment approach for tooth erosion: an in vitro laser-induced breakdown spectroscopy analysis. J Conserv Dent. 2023; 26(2): 165-9. DOI: https://doi.org/10.4103/jcd.jcd_483_22

Gokkaya B, Ozbek N, Guler Z, Akman S, Sarac AS, Kargul B. Effect of a single application of CPP-ACPF varnish on the prevention of erosive tooth wear: an AAS, AFM and SMH study. Oral Health Prev Dent. 2020; 18(2): 311-8. DOI: https://doi.org/10.3290/j.ohpd.a43365

Dionysopoulos D, Tolidis K, Sfeikos T. Effect of CPP-ACPF and nano-hydroxyapatite preventive treatments on the susceptibility of enamel to erosive challenge. Oral Health Prev Dent. 2019; 17(4): 357-64. DOI: https://doi.org/10.3290/j.ohpd.a42690

Xavier AM, Rai K, Hegde AM, Shetty S. A spectroscopic and surface microhardness study on enamel exposed to beverages supplemented with lower iron concentrations. J Clin Pediatr Dent. 2015; 39(2): 161-7. DOI: https://doi.org/10.17796/jcpd.39.2.g52v661835527526

Xavier AM, Rai K, Hegde AM, Shetty S. A spectroscopic and surface microhardness study of enamel exposed to beverages supplemented with ferrous fumarate and ferrous sulfate: a randomized in vitro trial. Am J Dent. 2016; 29(3): 132-6.

Haghgou HR, Haghgoo R, Asdollah FM. Comparison of the microhardness of primary and permanent teeth after immersion in two types of carbonated beverages. J Int Soc Prev Community Dent. 2016; 6(4): 344-8. DOI: https://doi.org/10.4103/2231-0762.186803

Korte A, Angelopoulou MV, Maroulakos G. Assessing the effect of low calorie soda beverages on primary tooth enamel: an in vitro study. J Clin Pediatr Dent. 2019; 43(3): 190-5. DOI: https://doi.org/10.17796/1053-4625-43.3.8

Mensink GBM, Schienkiewitz A, Rabenberg M, Borrmann A, Richter A, Haftenberger M. Consumption of sugary soft drinks among children and adolescents in Germany: results of the cross-sectional KiGGS Wave 2 study and trends. J Health Monit. 2018; 3(1): 31-7. DOI: http://dx.doi.org/10.17886/RKI-GBE-2018-024

Al-Zalabani AH. Prevalence and predictors of soft drink consumption among adolescents in the gulf countries: findings from national surveys. Nutrients. 2024; 16(16): 2637. DOI: https://doi.org/10.3390/nu16162637

Stoleriu S, Iovan G, Georgescu A, Sandu AV, Roşca M, Andrian S. Study regarding the effect of acid beverages and oral rinsing solutions on dental hard tissues. Rev Chim. 2012; 63(1): 68-73.

Caneppele TMF, Jeronymo RDI, Di Nicoló R, de Araújo MA, Soares LES. In Vitro assessment of dentin erosion after immersion in acidic beverages: surface profile analysis and energy-dispersive X-ray fluorescence spectrometry study. Braz Dent J. 2012; 23(4): 373-8. DOI: https://doi.org/10.1590/S0103-64402012000400011

Poggio C, Lombardini M, Vigorelli P, Colombo M, Chiesa M. The role of different toothpastes on preventing dentin erosion: an SEM and AFM study®. Scanning. 2014; 36(3): 301-10. DOI: https://doi.org/10.1002/sca.21105

Leal J, Ferreira R, Santana G, Silva-Fialho P, Oliveira-Lima L, Vale G. Effect of high-fluoride dentifrice on root dentine de-remineralization exposed to erosion challenge in vitro. J Clin Exp Dent. 2022; 14(7): e546-e549. DOI: https://doi.org/10.4317/jced.59091

Camilotti V, Mendonça MJ, Dobrovolski M, Detogni AC, Ambrosano GMB, De Goes MF. Impact of dietary acids on the surface roughness and morphology of composite resins. J Oral Sci. 2020; 63(1): 18-21.DOI: https://doi.org/10.2334/josnusd.19-0518

Das K, Murthy CS, Naganath M, Mehta D, Anitha Kumari R, Karobari MI et al. Insights into the effects and implications of acidic beverages on resin composite materials in dental restorations: an in vitro study. J Esthet Restor Dent. 2024. DOI: https://doi.org/10.1111/jerd.13372

Isabel CAC, Dominguette AAS, dos Santos SG, Ribeiro JCR, Moysés MR. Surface roughness of a resin composite. Rev Gaúch Odontol. 2016; 64(1): 50-5. DOI: https://doi.org/10.1590/1981-863720160001000072929

Chowdhury D, Mazumdar P, Desai P, Datta P. Comparative evaluation of surface roughness and color stability of nanohybrid composite resin after periodic exposure to tea, coffee, and Coca-cola: an in vitro profilometric and image analysis study. J Conserv Dent. 2020; 23(4): 395-401. DOI: https://doi.org/10.4103/jcd.jcd_401_20

Albarran-Martínez L, Rodríguez-Vilchis LE, Contreras-Bulnes R, Moyaho-Bernal MLA, Teutle-Coyotecatl B. Effect of different industrialized acid beverages on the surface roughness of flowable composite resins: in vitro study. J Clin Pediatr Dent. 2023; 47(5): 152-61. DOI: https://doi.org/10.22514/jocpd.2023.065

Hamouda IM. Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. J Esthet Restor Dent. 2011; 23(5): 315-22. DOI: https://doi.org/10.1111/j.1708-8240.2011.00453.x

Reddy PS, Tejaswi KLS, Shetty S, Annapoorna BM, Pujari SC, Thippeswamy HM. Effects of commonly consumed beverages on surface roughness and color stability of the nano, microhybrid and hybrid composite resins: an in vitro study. J Contemp Dent Pract. 2013; 14(4): 718-23. DOI: https://doi.org/10.5005/jp-journals-10024-1390

Amaya-Pajares SP, Koi K, Watanabe H, da Costa JB, Ferracane JL. Development and maintenance of surface gloss of dental composites after polishing and brushing: review of the literature. J Esthet Restor Dent. 2022; 34(1): 15-41. DOI: https://doi.org/10.1111/jerd.12875

Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: evaluation after exposure to acidic drink. Biomed Res Int. 2019; 2019: 5109481. DOI: https://doi.org/10.1155/2019/5109481

Scribante A, Gallo S, Scarantino S, Dagna A, Poggio C, Colombo M. Exposure of biomimetic composite materials to acidic challenges: influence on flexural resistance and elastic modulus. Biomimetics (Basel). 2020; 5(4): 56. DOI: https://doi.org/10.3390/biomimetics5040056

Rathod A, Vadavadagi SV, Verma T, Kumar P, Deepak PV, Deb S, Iqbal A. Effect of acidic beverages on color stability and microhardness of various esthetic restorative materials: a comparative study. J Pharm Bioallied Sci. 2021; 13(Suppl 2): S1084-S1087. DOI: https://doi.org/10.4103/jpbs.jpbs_189_21

Tanthanuch S, Kukiattrakoon B, Siriporananon C, Ornprasert N, Mettasitthikorn W, Likhitpreeda S et al. The effect of different beverages on surface hardness of nanohybrid resin composite and giomer. J Conserv Dent. 2014; 17(3): 261-5. DOI: https://doi.org/10.4103/0972-0707.131791

Szalewski L, Wójcik D, Bogucki M, Szkutnik J, Różyło-Kalinowska I. The influence of popular beverages on mechanical properties of composite resins. Materials (Basel). 2021; 14(11): 3097. DOI: https://doi.org/10.3390/ma14113097

Karda B, Jindal R, Mahajan S, Sandhu S, Sharma S, Kaur R. To analyse the erosive potential of commercially available drinks on dental enamel and various tooth coloured restorative materials: an in-vitro study. J Clin Diagn Res. 2016; 10(5): ZC117-21. DOI: https://doi.org/10.7860/jcdr/2016/16956.7841

Moyin S, Lahiri B, Sam G, Nagdev P, Kumar NN. Evaluation of the impact of acidic drink on the microhardness of different esthetic restorative materials: an in vitro study. J Contemp Dent Pract. 2020; 21(3): 233-7.

Yazkan B. Surface degradation evaluation of different self-adhesive restorative materials after prolonged energy drinks exposure. J Esthet Restor Dent. 2020; 32(7): 707-14. DOI: https://doi.org/10.1111/jerd.12629

Iosif C, Cuc S, Prodan D, Moldovan M, Petean I, Labunet A et al. Mechanical properties of orthodontic cements and their behavior in acidic environments. Materials (Basel). 2022; 15(22): 7904. DOI: https://doi.org/10.3390/ma15227904

Dinakaran S. Evaluation of the effect of different food media on the marginal integrity of class v compomer, conventional and resin-modified glass-ionomer restorations: an in vitro study. J Int Oral Health. 2015; 7(3): 53-8.

Zakir T, Dandekeri S, Suhaim KS, Shetty NHG, Ragher M, Shetty SK. Influence of aerated drink, mouthwash, and simulated gastric acid on the surface roughness of dental ceramics: a comparative in vitro study. J Pharm Bioallied Sci. 2020; 12(Suppl 1): S480-7. DOI: https://doi.org/10.4103/jpbs.jpbs_143_20

Watanabe H, Fellows C, An H. Digital technologies for restorative dentistry. Dent Clin North Am. 2022; 66(4): 567-90. DOI: https://doi.org/10.1016/j.cden.2022.05.006

Elraggal A, Afifi RR, Alamoush RA, Raheem IA, Watts DC. Effect of acidic media on flexural strength and fatigue of CAD-CAM dental materials. Dent Mater. 2023; 39(1): 57-69. DOI: https://doi.org/10.1016/j.dental.2022.11.019

Alnsour MM, Alamoush RA, Silikas N, Satterthwaite JD. The effect of erosive media on the mechanical properties of CAD/CAM composite materials. J Funct Biomater. 2024; 15(10): 292. DOI: https://doi.org/10.3390/jfb15100292

Tad KN, Gürbüz A, Oyar P. Influence of acidic solutions on surface roughness of polished and glazed CAD-CAM restorative materials. Head Face Med. 2025; 21(1): 16. DOI: https://doi.org/10.1186/s13005-025-00486-w

Kumar K, Shetty S, Krithika MJ, Cyriac B. Effect of commonly used beverage, soft drink, and mouthwash on force delivered by elastomeric chain: a comparative in vitro study. J Int Oral Health. 2014; 6(3): 7-10.

Pithon MM, Lacerda-Santos R, Santana LR, Rocha M, Leal RO, Santos MM. Does acidic drinks vs. controls differents interfere with the force of orthodontic chain elastics? Biosci J. 2014; 30(6): 1952-8.

Dehghani M, Alavian N, Noori N, Omidkhoda M. The effect of different soft drinks on the force degradation of conventional and memory orthodontic elastic chains: an in-vitro study. Front Dent. 2023; 20: 29. DOI: https://doi.org/10.18502/fid.v20i29.13347

Abbass NN, Albo Hassan AF, Nahidh M. The effect of energy drinks on force degradation of elastomeric chains: an in vitro study. J Orthod Sci. 2024; 13: 40. DOI: https://doi.org/10.4103/jos.jos_43_24

Leão Filho JCB, Gallo DB, Santana RM, Guariza-Filho O, Camargo ES, Tanaka OM. Influence of different beverages on the force degradation of intermaxillary elastics: an in vitro study. J Appl Oral Sci. 2013; 21(2): 145-9. DOI: https://doi.org/10.1590/1678-7757201302256

Parenti SI, Guicciardi S, Melandri C, Sprio S, Lafratta E, Tampieri A, Bonetti GA. Effect of soft drinks on the physical and chemical features of nickel-titanium-based orthodontic wires. Acta Odontol Scand. 2012; 70(1): 49-55. DOI: https://doi.org/10.3109/00016357.2011.575083

Maia LHEG, Lopes Filho H, Ruellas ACO, Araújo MTS, Vaitsman DS. Corrosion behavior of self-ligating and conventional metal brackets. Dental Press J Orthod. 2014; 19(2): 108-14. DOI: https://doi.org/10.1590/2176-9451.19.2.108-114.oar

Shahabi M, Jahanbin A, Esmaily H, Sharifi H, Salari S. Comparison of some dietary habits on corrosion behavior of stainless steel brackets: an in vitro study. J Clin Pediatr Dent. 2011; 35(4): 429-32. DOI: https://doi.org/10.17796/jcpd.35.4.m17j2h5827861m55

Mikulewicz M, Wołowiec P, Loster BW, Chojnacka K. Do soft drinks affect metal ions release from orthodontic appliances? J Trace Elem Med Biol. 2015; 31: 74-7. DOI: https://doi.org/10.1016/j.jtemb.2015.03.007

Mirhashemi SA, Jahangiri S, Mahdavi Moghaddam M, Bahrami R. Nickel and chromium ion release from orthodontic wires subjected to various drinks and distilled water. Front Dent. 2023; 20: 33. DOI: https://doi.org/10.18502/fid.v20i33.13639

Aiswareya G, Verma SK, Khan S, Owais M, Farooqi IH, Naseem S. Metal release and cytotoxicity of different orthodontic bracket-wire combinations: an in vitro study. J Int Soc Prev Community Dent. 2023; 13(6): 469-76. DOI: https://doi.org/10.4103/jispcd.jispcd_65_23

Ortiz AJ, Fernández E, Vicente A, Calvo JL, Ortiz C. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage. Am J Orthod Dentofacial Orthop. 2011; 140(3): e115-22. DOI: https://doi.org/10.1016/j.ajodo.2011.02.021

Simon CP, Motoc AGM, Simon GA, Brezovan D, Muselin F, Cristina RT, Bratu DC. Gingival proliferative growth - stress and cytoarchitecture related with fixed and mobile orthodontic therapy. Rom J Morphol Embryol. 2020; 61(4): 1287-94. DOI: https://doi.org/10.47162/rjme.61.4.29

Zigante M, Špalj S. Clinical predictors of metal allergic sensitization in orthodontic patients. Cent Eur J Public Health. 2022; 30(3): 173-8. DOI: https://doi.org/10.21101/cejph.a7122

Published

2025-04-22

How to Cite

Madrid-Troconis, C. C., Molina-Pérez, S., & Redondo-Rico, M. L. (2025). Effects of Coca-Cola® drink on hard dental tissues, restorative materials and orthodontic appliances: state of the art. Revista Facultad De Odontología Universidad De Antioquia, 37(1), e357892. https://doi.org/10.17533/udea.rfo.v37n1e357892