Evaluación de zonas de esfuerzo entre implante personalizado sinterizado e implante prefabricado mediante fotoelasticidad

Autores/as

  • Byron Vinicio Velasquez-Ron Universidad de las Américas https://orcid.org/0000-0001-5660-3941
  • Luis Pacheco Universidad de las Américas
  • Pablo Quintana Universidad de las Américas
  • Alexandra Mena Universidad de las Américas

DOI:

https://doi.org/10.17533/udea.rfo.v33n2a4

Palabras clave:

análisis del estrés dental, prótesis e implantes, diente premolar

Resumen

Introducción: el uso de implantes personalizados es un tratamiento utilizado con mayor frecuencia, valorando y comparando su comportamiento frente a implantes convencionales. Este estudio tuvo como objetivo analizar si las zonas de esfuerzo del implante personalizado son diferentes a las que presenta el implante prefabricado convencional mediante fotoelasticidad. Métodos: muestra n=10 dientes premolares superiores, n=10 implantes personalizados sinterizados y n=10 implantes prefabricados convencionales, sometidos a 3 presiones fijas y controladas, observados a través de un polariscopio para analizar la distribución del esfuerzo generados. Resultados: zonas de esfuerzo presentes en las diferentes muestras analizadas aplicando 3 presiones. La cantidad de esfuerzo en la presión 1 (test de Chi-cuadrado, p=0,596) es diferente entre los dos tipos de implantes al igual que con la presión 2 (test de Chi-cuadrado, p=0,407), al aplicar la presión 3 (test de Levene, p=0,899) no hay diferencia en la distribución de fuerzas entre los dos tipos de implantes. Conclusiones: se determinó que el implante prefabricado convencional distribuye y concentra mejor el esfuerzo generado bajo diferentes presiones en comparación con el implante personalizado sinterizado.

|Resumen
= 856 veces | TABLAS
= 0 veces| | FIGURAS
= 0 veces| | PDF
= 104 veces| | HTML
= 36 veces| | VISOR
= 14 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Byron Vinicio Velasquez-Ron, Universidad de las Américas

PhD. Msc en Investigación Clínica, Departamento de Investigación de Prótesis Dental, Facultad de Odontología, Universidad de las Américas –UDLA, Quito, Ecuador.

Luis Pacheco, Universidad de las Américas

Dr. en Rehabilitación Oral. Departamento de Investigación de Prótesis Dental, Facultad de Odontología, Universidad de las Américas –UDLA, Quito, Ecuador.

Pablo Quintana, Universidad de las Américas

Dr. en Implantología y Periodoncia, Departamento de Investigación de Implantología, Facultad de Odontología, Universidad de las Américas –UDLA. Quito, Ecuador.

Alexandra Mena, Universidad de las Américas

PhD. Msc Doctora en Odontología, Departamento de Investigación de Prótesis Dental, Facultad de Odontología, Universidad de las Américas –UDLA, Quito, Ecuador.

Citas

Pesqueira AA, Goiato MC, Filho HG, Monteiro DR, Dos Santos DM, Haddad MF, et al. Use of stress analysis methods to evaluate the biomechanics of oral Rehabilitation with implants. J Oral Implantol. 2014; 40(2): 217–28. DOI: https://doi.org/10.1563/aaid-joi-d-11-00066

Chen J, Zhang Z, Chen X, Zhang C, Zhang G, Xu Zhewu, et al. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. J Prosthet Dent. 2014; 112(5): 1088-95. DOI: https://doi.org/10.1016/j.prosdent.2014.04.026

Ramaglia L, Toti P, Sbordone C, Guidetti F, Martuscelli R, Sbordone L. Implant angulation: 2-year

retrospective analysis on the influence of dental implant angle insertion on marginal bone resorption in maxillary and mandibular osseous onlay grafts. Clin Oral Investig. 2015; 19(4): 769-79. DOI: https://doi.org/10.1007/s00784-014-1275-5

Taruna M, Chittaranjan B, Sudheer N, Tella S, Md Abusaad. Prosthodontic perspective to allon-4® concept for dental implants. J Clin Diagn Res. 2014; 8(10): ZE 16-9. DOI: https://dx.doi.

org/10.7860%2FJCDR%2F2014%2F9648.5020

Goiato Mc, Sarauza GS, Medeiros RA, Alves AP, Guiotti AM, dos Santos DM. Stress distribution

in bone simulation model with pre-angled implants. J Med Eng Technol. 2015;39(6):322-7. doi:

3109/03091902.2015.1054525

He W, Yin X, Xie L, Liu Z, Li J, Zou S, et al. Enhancing osseointegration of titanium implants through largegrit sandblasting combined with micro-arc oxidation surface modification. J Mater Sci Mater Med. 2019; 30(6): 73. DOI: https://doi.org/10.1007/s10856-019-6276-0

Chappuis V, Ferrín Maestre L, Bürki A, Barré SF, Buser D, Zysset P, et al. Osseointegration of ultrafinegrained titanium with a hydrophilic nano-patterned surface: an in vivo examination in miniature pigs. Biomater Sci. 2018; 9: 2448-59. DOI: https://doi.org/10.1039/C8BM00671G

Gasik M, Van Mellaert L, Pierron D, Braem A, Hofmans D, de Waelheyns E, et al. Reduction of biofilm infection risks and promotion of osteointegration for optimized surfaces of titanium implants. Adv Healthc Mater. 2012; 1(1): 117–27. DOI: https://doi.org/10.1002/adhm.201100006

Zanatta LCS, Dib LL, Gehrke SA. Photoelastic stress analysis surrounding different implant designs under simulated static loading. J Craniofac Surg. 2014; 25(3): 1068–71. DOI: https://doi.org/10.1097/scs.0000000000000829

Aalaei S, Naraki ZR, Nematollahi F, Beyabanaki E, Rad AS. Stress distribution pattern of screw-retained restorations with segmented vs. non-segmented abutments: a finite element analysis. Dent Res Dent Clin Prospects. 2017; 11(3): 149-55. DOI: https://doi.org/10.15171/joddd.2017.027

Velloso G, Moraschini V, Santos EPB. Hydrophilic modification of sandblasted and acid-etched implants improves stability during early healing: a human double-blind randomized controlled trial. Int J Oral Maxillofac Surg. 2019; 48(5): 684–90. DOI: https://doi.org/10.1016/j.ijom.2018.09.016

Prados-Privado M, Gehrke SA, Rojo R, Prados-Frutos JC. Probability of failure of internal hexagon and morse taper implants with different bone levels: a mechanical test and probabilistic fatigue. Int J Oral Maxillofac Implants. 2018; 33(6): 1266–73. DOI: http://dx.doi.org/10.11607/jomi.6426

Gehrke S, Lourenço Frugis V, Awad Shibli J, Ramirez Fernandez M, Calvo Girardo J, Taschieri S, Corbella S. Influence of Implant Design (Cylindrical and Conical) in the Load Transfer Surrounding Long (13mm) and Short (7mm) Length Implants: a photoelastic snalysis. Open Dent J. 2016. 30; 10: 522-30.

Valles C, Rodriguez-Ciurana X, Clementini M, Baglivo M, Paniagua B, Nart J. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platformswitched implants: a systematic review and meta-analysis. Clin Oral Investig. 2018; 22(2): 555-70. DOI:https://doi.org/10.1007/s00784-017-2301-1

Irandoust S, Müftü S. The interplay between bone healing and remodeling around dental implants. Sci Rep. 2020; 10(1): 4335. DOI: https://doi.org/10.1038/s41598-020-60735-7

Piza Pellizzer E, Cantieri de Mello C, Santiago Junior JF, Batista VES, Almeida DAF, Verri FR, et al. Analysis of the biomechanical behavior of short implants: the photo-elasticity method. Mater. Sci Eng C mater Biol Appl. 2015; 55: 187–92. DOI: https://doi.org/10.1016/j.msec.2015.05.024

Cerea M, Dolcini GA. Custom-made direct metal laser sintering titanium subperiosteal implants: a retrospective clinical study on 70 patients. BioMed Res Int. 2018; 2018: 1–11. DOI: https://doi.org/10.1155/2018/5420391

Eskandarloo A, Arabi R, Bidgoli M, Yousefi F, Poorolajal J. Association between marginal bone loss and bone quality at dental implant sites based on evidence from cone beam computed tomography and periapical radiographs. Contemp Clin Dent. 2019; 10(1): 36-41. DOI: https://doi.org/10.4103/ccd.ccd_185_18

Goiato M. Coelho M, Shibayama R. Filho H. Medeiros R. Pesqueira A. Micheline D. Stress distribution in implant-supported prostheses using different connection system and cantilever lengths :digital phothoelasticity J Med Eng Technol. 2016; 40(2): 35-42.

Novellino MM, Sesma N, Zanardi PR, Laganá DC.Resonance frequency analysis of dental implants placed at the posterior maxilla varying the surface treatment only: A randomized clinical trial. Clin Implant Dent Relat Res. 2017 Oct;19(5):770-775. doi: 10.1111/cid.12510.

Archivos adicionales

Publicado

2022-06-10

Cómo citar

Velasquez-Ron, B. V., Pacheco, L., Quintana, P., & Mena, A. (2022). Evaluación de zonas de esfuerzo entre implante personalizado sinterizado e implante prefabricado mediante fotoelasticidad. Revista Facultad De Odontología Universidad De Antioquia, 33(2), 31–41. https://doi.org/10.17533/udea.rfo.v33n2a4