Friction in orthodontics
DOI:
https://doi.org/10.17533/udea.rfo.v35n2a8Keywords:
Friction, orthodontics, orthodontic frictionAbstract
Friction is a fundamental aspect of orthodontic movement. Researchers and clinicians must be acquainted with its biomechanical and physical principles, as well as the potential alterations that may occur with the use of diverse materials. This literature review presents an approach of the physical principles at work in frictional mechanics, an analysis of the friction, at macro and microscopic level, of different orthodontic materials; describes the influence of friction on tooth movement and presents an update on friction research and its relationship to various materials.
Downloads
References
Özkaya N, Leger D, Goldsheyder D, Nordin M. Fundamentals of Biomechanics. Fundamentals of Biomechanics. Cham: Springer International Publishing; 2017. 1–252. Disponible en http://link.springer.com/10.1007/978-3-319-44738-4
Katz MI. Timely observations on friction and sliding. Am J Orthod Dentofac Orthop. 2009; 136(1): 3–4. DOI: http://dx.doi.org/10.1016/j.ajodo.2009.05.009
Bach RM. Understanding friction and sliding. Am J Orthod Dentofac Orthop. 2009; 136(1): 4–5. DOI: http://dx.doi.org/10.1016/j.ajodo.2009.05.008
Kusy RP. Orthodontic biomechanics: vistas from the top of a new century. Am J Orthod Dentofacial Orthop. 2000; 117(5): 589–91. DOI: https://doi.org/10.1016/s0889-5406(00)70210-1
Sadowsky PL, Rossouw PE. Introduction. Semin Orthod. 2003; 9(4): 217. DOI: https://doi.org/10.1016/j.sodo.2003.08.001
Thomas S, Sherriff M, Birnie D. A comparative in vitro study of the frictional characteristics of two types of self-ligating brackets and two types of pre-adjusted edgewise brackets tied with elastomeric ligatures. Eur J Orthod. 1998; 20(5): 589–96. DOI: https://doi.org/10.1093/ejo/20.5.589
Pizzoni L, Ravnholt G, Melsen B. Frictional forces related to self-ligating brackets. Eur J Orthod. 1998; 20(3): 283–91. DOI: https://doi.org/10.1093/ejo/20.3.283
Kula K, Phillips C, Gibilaro A, Proffit WR. Effect of ion implantation of TMA archwires on the rate of orthodontic sliding space closure. Am J Orthod Dentofac Orthop. 1998; 114(5): 577–80. DOI: https://doi.org/10.1016/s0889-5406(98)70177-5
Park J-H, Lee Y-K, Lim B-S, Kim C-W. Frictional forces between lingual brackets and archwires measured by a friction tester. Angle Orthod. 2004; 74(6): 816–24. DOI: https://doi.org/10.1043/0003-3219(2004)074%3C0816:ffblba%3E2.0.co;2
Kamelchuk LS, Rossouw PE. Development of a laboratory model to test kinetic orthodontic friction. Semin Orthod. 2003; 9(4): 251–61. DOI: https://doi.org/10.1016/j.sodo.2003.08.005
Eliades T, Bourauel C. Intraoral aging of orthodontic materials: the picture we miss and its clinical relevance. Am J Orthod Dentofac Orthop. 2005; 127(4): 403–12. DOI: https://doi.org/10.1016/j.ajodo.2004.09.015
Frank CA, Nikolai RJ. A comparative study of frictional resistances between orthodontic bracket and arch wire. Am J Orthod. 1980; 78(6): 593–609. DOI: https://doi.org/10.1016/0002-9416(80)90199-2
Rossouw PE. Friction: an overview. Semin Orthod. 2003; 9(4): 218–22. DOI: https://doi.org/10.1016/j.sodo.2003.08.002
Kusy RP. The future of orthodontic materials: the long-term view. Am J Orthod Dentofacial Orthop. 1998; 113(1): 91–5. DOI: https://doi.org/10.1016/s0889-5406(98)70280-x
Carrion-Vilches FJ, Bermudez MD, Fructuoso P. Static and kinetic friction force and surface roughness of different archwire-bracket sliding contacts. Dent Mater J. 2015; 34(5): 648–53. DOI: https://doi.org/10.4012/dmj.2014-295
Kusy RP. Influence of force systems on archwire-bracket combinations. Am J Orthod Dentofac Orthop. 2005; 127(3): 333–42. DOI: https://doi.org/10.1016/j.ajodo.2004.07.037
Burstone CJ. Applications of bioengineering to clinical orthodontics. In: Graber TM, Vanarsdall RL, Vig KWL, editors. Orthodontics: current principles and techniques (4Th Edition). 4th ed. Philadelphia: Mosby; 2005. p. 293–330.
Kusy RP, Whitley JQ. Influence of archwire and bracket dimensions on sliding mechanics: derivations and determinations of the critical contact angles for binding. Eur J Orthod. 1999; 21(2): 199–208. DOI: https://doi.org/10.1093/ejo/21.2.199
Rossouw PE, Kamelchuk LS, Kusy RP. A fundamental review of variables associated with low velocity frictional dynamics. Semin Orthod. 2003; 9(4): 223–35. DOI: https://doi.org/10.1016/j.sodo.2003.08.003
Schlegel V. Relative friction minimization in fixed orthodontic bracket appliances. J Biomech. 1996; 29(4): 483–91. DOI: https://doi.org/10.1016/0021-9290(95)00062-3
Kusy RP. “Two” much of a good thing? Then let’s pick one slot size and make it metric. Am J Orthod Dentofac Orthop. 2002; 121(4): 337–8. DOI: https://doi.org/10.1067/mod.2002.123041
Jones SP, Tan CCH, Davies EH. The effects of reconditioning on the slot dimensions and static frictional resistance of stainless-steel brackets. Eur J Orthod. 2002; 24(2): 183–90. DOI: https://doi.org/10.1093/ejo/24.2.183
Angolkar PV, Kapila S, Duncanson MG, Nanda RS. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am J Orthod Dentofac Orthop. 1990; 98(6): 499–506. DOI: https://doi.org/10.1016/0889-5406(90)70015-5
Zinelis S, Annousaki O, Makou M, Eliades T. Metallurgical characterization of orthodontic brackets produced by Metal Injection Molding (MIM). Angle Orthod. 2005; 75(6): 1024–31. DOI: https://doi.org/10.1043/0003-3219(2005)75[1024:mcoobp]2.0.co;2
Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofac Orthop. 1990; 98(5): 398–403. DOI: https://doi.org/10.1016/s0889-5406(05)81647-6
Moore MM, Harrington E, Rock WP. Factors affecting friction in the pre-adjusted appliance. Eur J Orthod. 2004; 26(6): 579–83. DOI: https://doi.org/10.1093/ejo/26.6.579
Articolo LC, Kusy K, Saunders CR, Kusy RP. Influence of ceramic and stainless steel brackets on the notching of archwires during clinical treatment. Eur J Orthod. 2000; 22(4): 409–25. DOI: https://doi.org/10.1093/ejo/22.4.409
Articolo LC, Kusy RP. Influence of angulation on the resistance to sliding in fixed appliances. Am J Orthod Dentofac Orthop. 1999; 115(1): 39–51. DOI: https://doi.org/10.1016/S0889-5406(99)70314-8
Kang BS, Baek SH, Mah J, Yang WS. Three-dimensional relationship between the critical contact angle and the torque angle. Am J Orthod Dentofac Orthop. 2003; 123(1): 64–73. DOI: https://doi.org/10.1067/mod.2003.55
Hwang C-J, Shin J-S, Cha J-Y. Metal release from simulated fixed orthodontic appliances. Am J Orthod Dentofac Orthop. 2001; 120(4): 383–91. DOI: https://doi.org/10.1067/mod.2001.117911
Mendes K, Rossouw PE. Friction: validation of manufacturer’s claim. Semin Orthod. 2003; 9(4): 236–50. DOI: https://doi.org/10.1016/j.sodo.2003.08.004
Bobadilla-Gaviria M, Montoya-Goez Y. Medición in vitro de la fuerza de fricción en duplas arco-bracket con angulación. Rev Ing Biomédica. 2008; 2(3): 84–90.
Kapur R, Sinha PK, Nanda RS. Frictional resistance in orthodontic brackets with repeated use. Am J Orthod Dentofac Orthop. 1999; 116(4): 400–4. DOI: https://doi.org/10.1016/S0889-5406(99)70224-6
Ogata RH, Nanda RS, Duncanson MG, Sinha PK, Currier GF. Frictional resistances in stainless steel bracket-wire combinations with effects of vertical defections. Am J Orthod Dentofac Orthop. 1996; 109(5): 535–42. DOI: https://doi.org/10.1016/s0889-5406(96)70139-7
Meling TR, Ødegaard J, Holthe K, Segner D. The effect of friction on the bending stiffness of orthodontic beams: a theoretical and in vitro study. Am J Orthod Dentofac Orthop. 1997; 112(1): 41–9. DOI: https://doi.org/10.1016/s0889-5406(97)70272-5
Loftus BP, Artun J, Nicholls JI, Alonzo TA, Stoner JA. Evaluation of friction during sliding tooth movement in various bracket-arch wire combinations. Am J Orthod Dentofacial Orthop. 1999; 116(3): 336–45. DOI: https://doi.org/10.1016/s0889-5406(99)70247-7
Kapila S, Angolkar P V., Duncanson MG, Nanda RS. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am J Orthod Dentofac Orthop. 1990; 98(2): 117–26. DOI: https://doi.org/10.1016/0889-5406(90)70005-w
Kusy RP, Whitley JQ, Mayhew MJ, Buckthal JE. Surface roughness of orthodontic archwires via laser spectroscopy. Angle Orthod. 1988; 58(1): 33–45. DOI: https://doi.org/10.1043/0003-3219(1988)058%3C0033:srooa%3E2.0.co;2
Prososki RR, Bagby MD, Erickson LC. Static frictional force and surface roughness of nickel-titanium arch wires. Am J Orthod Dentofac Orthop. 1991; 100(4): 341–8. DOI: https://doi.org/10.1016/0889-5406(91)70072-5
Karamouzos A, Athanasiou AE, Papadopoulos MA. Clinical characteristics and properties of ceramic brackets: a comprehensive review. Am J Orthod Dentofac Orthop. 1997; 112(1): 34–40. DOI: https://doi.org/10.1016/S0889-5406(97)70271-3
Keith O, Kusy RP, Whitley JQ. Zirconia brackets: an evaluation of morphology and coefficients of friction. Am J Orthod Dentofac Orthop. 1994; 106(6): 605–14. DOI: https://doi.org/10.1016/s0889-5406(94)70085-0
Bednar JR, Gruendeman GW, Sandrik JL. A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofac Orthop. 1991; 100(6): 513–22. DOI: https://doi.org/10.1016/0889-5406(91)70091-a
Cacciafesta V, Sfondrini MF, Scribante A, Klersy C, Auricchio F. Evaluation of friction of conventional and metal-insert ceramic brackets in various bracket-archwire combinations. Am J Orthod Dentofac Orthop. 2003; 124(4): 403–9. DOI: https://doi.org/10.1016/s0889-5406(03)00501-8
Clocheret K, Willems G, Carels C, Celis JP. Dynamic frictional behaviour of orthodontic archwires and brackets. Eur J Orthod. 2004; 26(2): 163–70. DOI: https://doi.org/10.1093/ejo/26.2.163
Vaughan JL, Duncanson MG, Nanda RS, Currier GF. Relative kinetic frictional forces between sintered stainless-steel brackets and orthodontic wires. Am J Orthod Dentofac Orthop. 1995; 107(1): 20–7. DOI: https://doi.org/10.1016/s0889-5406(95)70153-2
Whitley JQ, Kusy RP. Resistance to sliding of titanium brackets tested against stainless steel and beta-titanium archwires with second-order angulation in the dry and wet states. Am J Orthod Dentofac Orthop. 2007; 131(3): 400–11. DOI: https://doi.org/10.1016/j.ajodo.2005.07.019
Nishio C, Da Motta AFJ, Elias CN, Mucha JN. In vitro evaluation of frictional forces between archwires and ceramic brackets. Am J Orthod Dentofac Orthop. 2004; 125(1): 56–64. DOI: https://doi.org/10.1016/j.ajodo.2003.01.005
Kusy RP, Whitley JQ. Coefficients of friction for arch wires in stainless steel and polycrystalline alumina bracket slots. I. The dry state. Am J Orthod Dentofac Orthop. 1990; 98(4): 300–12. DOI: https://doi.org/10.1016/s0889-5406(05)81487-8
Tselepis M, Brockhurst P, West VC. The dynamnic frictional resistance between orthodontic brackets and arch wires. Am J Orthod Dentofac Orthop. 1994; 106(2): 131–8. DOI: https://doi.org/10.1016/s0889-5406(94)70030-3
Tanne K, Matsubara S, Hotei Y, Sakuda M, Yoshida M. Frictional forces and surface topography of a new ceramic bracket. Am J Orthod Dentofac Orthop. 1994; 106(3): 273–8. DOI: https://doi.org/10.1016/s0889-5406(94)70047-8
Bazakidou E, Nanda RS, Duncanson MG, Sinha P. Evaluation of frictional resistance in esthetic brackets. Am J Orthod Dentofacial Orthop. 1997; 112(2): 138–44. DOI: https://doi.org/10.1016/s0889-5406(97)70238-5
Wichelhaus A, Geserick M, Hibst R, Sander FG. The effect of surface treatment and clinical use on friction in NiTi orthodontic wires. Dent Mater. 2005; 21(10): 938–45. DOI: https://doi.org/10.1016/j.dental.2004.11.011
Reicheneder CA, Baumert U, Gedrange T, Proff P, Faltermeier A, Muessig D. Frictional properties of aesthetic brackets. Eur J Orthod. 2007; 29(4): 359–65. DOI: https://doi.org/10.1093/ejo/cjm033
Badawi HM, Toogood RW, Carey JPR, Heo G, Major PW. Three-dimensional orthodontic force measurements. Am J Orthod Dentofac Orthop. 2009; 136(4): 518–28. DOI: https://doi.org/10.1016/j.ajodo.2009.02.025
Henao SP, Kusy RP. Evaluation of the frictional resistance of conventional and self-ligating bracket designs using standardized archwires and dental typodonts. Angle Orthod. 2004; 74(2): 202–11. DOI: https://doi.org/10.1043/0003-3219(2004)074%3C0202:eotfro%3E2.0.co;2
Khambay B, Millett D, McHugh S. Evaluation of methods of archwire ligation on frictional resistance. Eur J Orthod. 2004; 26(3): 327–32. DOI: https://doi.org/10.1093/ejo/26.3.327
Read-Ward GE, Jones SP, Davies EH. A comparison of self-ligating and conventional orthodontic bracket systems. Br J Orthod. 1997; 24(4): 309–17. DOI: https://doi.org/10.1093/ortho/24.4.309
Cacciafesta V, Sfondrini MF, Ricciardi A, Scribante A, Klersy C, Auricchio F. Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations. Am J Orthod Dentofac Orthop. 2003; 124(4): 395–402. DOI: https://doi.org/10.1016/s0889-5406(03)00504-3
Franchi L, Baccetti T, Camporesi M, Barbato E. Forces released during sliding mechanics with passive self-ligating brackets or nonconventional elastomeric ligatures. Am J Orthod Dentofac Orthop. 2008; 133(1): 87–90. DOI: https://doi.org/10.1016/j.ajodo.2007.08.011
Hain M, Dhopatkar A, Rock P. A comparison of different ligation methods on friction. Am J Orthod Dentofac Orthop. 2006; 130(5): 666–70. DOI: https://doi.org/10.1016/j.ajodo.2006.04.021
Gómez SL, Montoya Y, Garcia NL, Virgen AL, Botero JE. Comparison of frictional resistance among conventional, active and passive selfligating brackets with different combinations of arch wires: a finite elements study. Acta Odontol Latinoam. 2016; 29(2): 130–6.
Yeh CL, Kusnoto B, Viana G, Evans CA, Drummond JL. In-vitro evaluation of frictional resistance between brackets with passive-ligation designs. Am J Orthod Dentofac Orthop. 2007; 131(6): 704.e11-22. DOI: https://doi.org/10.1016/j.ajodo.2006.09.041
Shivapuja PK, Berger J. A comparative study of conventional ligation and self-ligation bracket systems. Am J Orthod Dentofac Orthop. 1994; 106(5): 472–80. DOI: https://doi.org/10.1016/s0889-5406(94)70069-9
Szczupakowski A, Reimann S, Dirk C, Keilig L, Weber A, Jäger A, et al. Friction behavior of self-ligating and conventional brackets with different ligature systems. J Orofac Orthop. 2016; 77(4): 287–95. DOI: https://doi.org/10.1007/s00056-016-0035-3
Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review. Am J Orthod Dentofac Orthop. 2009; 135(4): 442–7. DOI: https://doi.org/10.1016/j.ajodo.2008.09.023
Kusy RP. Orthodontic biomaterials: from the past to the present. Angle Orthod. 2002; 72(2): 501–12. DOI: https://doi.org/10.1043/0003-3219(2002)072%3C0501:OBFTPT%3E2.0.CO;2
Ellis CP. Self-ligating brackets. Am J Orthod Dentofac Orthop. 2008; 133(1): 4–5. DOI: https://doi.org/10.1016/j.ajodo.2007.11.003
Agarwal S, Valiathan A, Shah N V. Self-ligating brackets. Am J Orthod Dentofac Orthop. 2008; 134(1): 5-6. DOI: https://doi.org/10.1016/j.ajodo.2008.05.009
Rinchuse DJ, Miles PG. Self-ligating brackets: present and future. Am J Orthod Dentofac Orthop. 2007; 132(2): 216–22. DOI: https://doi.org/10.1016/j.ajodo.2006.06.018
Heo W, Baek SH. Friction properties according to vertical and horizontal tooth displacement and bracket type during initial leveling and alignment. Angle Orthod. 2011; 81(4): 653–61. DOI: https://doi.org/10.2319/072310-431.1
Kim TK, Kim KD, Baek SH. Comparison of frictional forces during the initial leveling stage in various combinations of self-ligating brackets and archwires with a custom-designed typodont system. Am J Orthod Dentofac Orthop. 2008; 133(2): 187.e15-e24. DOI: https://doi.org/10.1016/j.ajodo.2007.08.013
Rinchuse DJ, Rinchuse DJ, Kapur-Wadhwa R. Orthodontic appliance design. Am J Orthod Dentofac Orthop. 2007; 131(1): 76–82. DOI: https://doi.org/10.1016/j.ajodo.2005.04.039
Thorstenson GA, Kusy RP. Resistance to sliding of orthodontic brackets with bumps in the slot floors and walls: effects of second-order angulation. Dent Mater. 2004; 20(9): 881–92. DOI: https://doi.org/10.1016/j.dental.2004.04.004
Thorstenson GA, Kusy RP. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state. Am J Orthod Dentofac Orthop. 2002; 122(3): 295–305. DOI: https://doi.org/10.1067/mod.2002.126156
Tecco S, Di Iorio D, Cordasco G, Verrocchi I, Festa F. An in vitro investigation of the influence of self-ligating brackets, low friction ligatures, and archwire on frictional resistance. Eur J Orthod. 2007; 29(4): 390–7. DOI: https://doi.org/10.1093/ejo/cjm007
Faber J. Tying twin brackets. Am J Orthod Dentofac Orthop. 2000; 118(1): 101–6. DOI: https://doi.org/10.1067/mod.2000.104446
Griffiths HS, Sherriff M, Ireland AJ. Resistance to sliding with 3 types of elastomeric modules. Am J Orthod Dentofac Orthop. 2005; 127(6): 670–5. DOI: https://doi.org/10.1016/j.ajodo.2004.01.025
Hain M, Dhopatkar A, Rock P. The effect of ligation method on friction in sliding mechanics. Am J Orthod Dentofac Orthop. 2003; 123(4): 416–22. DOI: https://doi.org/10.1067/mod.2003.14
Chimenti C, Franchi L, Di Giuseppe MG, Lucci M. Friction of orthodontic elastomeric ligatures with different dimensions. Angle Orthod. 2005; 75(3): 421–5. DOI: https://doi.org/10.1043/0003-3219(2005)75[421:fooelw]2.0.co;2
Iwasaki LR, Beatty MW, Randall CJ, Nickel JC. Clinical ligation forces and intraoral friction during sliding on a stainless steel archwire. Am J Orthod Dentofac Orthop. 2003; 123(4): 408–15. DOI: https://doi.org/10.1067/mod.2003.61
Khambay B, Millett D, McHugh S. Archwire seating forces produced by different ligation methods and their effect on frictional resistance. Eur J Orthod. 2005; 27(3): 302–8. DOI: https://doi.org/10.1093/ejo/cji008
De Franco DJ, Spiller REJ, von Fraunhofer JA. Frictional resistances using Teflon-coated ligatures with various bracket-archwire combinations. Angle Orthod. 1995; 65(1): 63–72. DOI: https://doi.org/10.1043/0003-3219(1995)065%3C0063:FRUTLW%3E2.0.CO;2
Willems G, Clocheret K, Celis JP, Verbeke G, Chatzicharalampous E, Carels C. Frictional behavior of stainless-steel bracket-wire combinations subjected to small oscillating displacements. Am J Orthod Dentofac Orthop. 2001; 120(4): 371–7. DOI: https://doi.org/10.1067/mod.2001.116088
Eliades T, Brantley W. In vitro friction assessment in orthodontics. In: Eliades T, Brantley WA, editors. Orthodontic applications of biomaterials: a clinical guide. Elsevier Ltd; 2016. p. 97–105. DOI: http://dx.doi.org/10.1016/B978-0-08-100383-1.00005-9
Iwasaki LR, Beatty MW, Nickel JC. Friction and orthodontic mechanics: clinical studies of moment and ligation effects. Semin Orthod. 2003; 9(4): 290–7. DOI: https://doi.org/10.1016/j.sodo.2003.08.008
Tecco S, Festa F, Caputi S, Traini T, Di Iorio D, D’Attilio M. Friction of conventional and self-ligating brackets using a 10-bracket model. Angle Orthod. 2005; 75(6): 1041–5. DOI: https://doi.org/10.1043/0003-3219(2005)75[1041:focasb]2.0.co;2
Miles PG. Self-ligating vs conventional twin brackets during en-masse space closure with sliding mechanics. Am J Orthod Dentofac Orthop. 2007; 132(2): 223–5. DOI: https://doi.org/10.1016/j.ajodo.2007.04.028
Naziris K, Piro NE, Jäger R, Schmidt F, Elkholy F, Lapatki BG. Experimental friction and deflection forces of orthodontic leveling archwires in three-bracket model experiments. J Orofac Orthop. 2019; 80(5): 223–35. DOI: https://doi.org/10.1007/s00056-019-00187-5
Kapila S, Sachdeva R. Mechanical properties and clinical applications of orthodontic wires. Am J Orthod Dentofacial Orthop. 1989; 96(2): 100–9. DOI: https://doi.org/10.1016/0889-5406(89)90251-5
Garner LD, Allai WW, Moore BK. A comparison of frictional forces during simulated canine retraction of a continuous edgewise arch wire. Am J Orthod Dentofac Orthop. 1986; 90(3): 199–203. DOI: https://doi.org/10.1016/0889-5406(86)90066-1
Cash A, Curtis R, Garrigia-Majo D, McDonald F. A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy archwires in stainless steel brackets. Eur J Orthod. 2004; 26(1): 105–11. DOI: https://doi.org/10.1093/ejo/26.1.105
Insabralde NM, Poletti T, Conti AC, Oltramari-Navarro PV, Lopes MB, Flores-Mir C, et al. Comparison of mechanical properties of beta-titanium wires between leveled and unleveled brackets: an in vitro study. Prog Orthod. 2014; 15(1): 42. DOI: https://doi.org/10.1186/s40510-014-0042-0
Wilkinson PD, Dysart PS, Hood JAA, Herbison GP. Load-deflection characteristics of superelastic nickel-titanium orthodontic wires. Am J Orthod Dentofac Orthop. 2002; 121(5): 483–95. DOI: https://doi.org/10.1067/mod.2002.121819
Hemingway R, Williams RL, Hunt JA, Rudge SJ. The influence of bracket type on the force delivery of Ni-Ti archwires. Eur J Orthod. 2001; 23(3): 233–41. DOI: https://doi.org/10.1093/ejo/23.3.233
Takada M, Nakajima A, Kuroda S, Horiuchi S, Shimizu N, Tanaka E. In vitro evaluation of frictional force of a novel elastic bendable orthodontic wire. Angle Orthod. 2018; 88(5): 602–10. DOI: https://doi.org/10.2319%2F111417-779.1
Imai T, Watarib F, Yamagatac S, Kobayashid M, Nagayamae K, Nakamuraf S. Effects of water immersion on mechanical properties of new esthetic orthodontic wire. Am J Orthod Dentofac Orthop. 1999; 116(5): 533–8. DOI: https://doi.org/10.1016/s0889-5406(99)70185-x
Varela JC, Velo M, Espinar E, Llamas JM, Rúperez E, Manero JM, et al. Mechanical properties of a new thermoplastic polymer orthodontic archwire. Mater Sci Eng C Mater Biol Appl. 2014; 42:1–6. DOI: https://doi.org/10.1016/j.msec.2014.05.008
Muguruma T, Iijima M, Yuasa T, Kawaguchi K, Mizoguchi I. Characterization of the coatings covering esthetic orthodontic archwires and their influence on the bending and frictional properties. Angle Orthod. 2017; 87(4): 610–7. DOI: https://doi.org/10.2319/022416-161.1
Kojima Y, Fukui H. Numerical simulation of canine retraction by sliding mechanics. Am J Orthod Dentofac Orthop. 2005; 127(5): 542–51. DOI: https://doi.org/10.1016/j.ajodo.2004.12.007
Smith DV, Rossouw PE, Watson P. Quantified simulation of canine retraction: evaluation of frictional resistance. Semin Orthod. 2003; 9(4): 262–80. DOI: https://doi.org/10.1016/j.sodo.2003.08.006
Yamaguchi K, Nanda RS, Morimoto N, Oda Y. A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am J Orthod Dentofac Orthop. 1996; 109(1): 50–6. DOI: https://doi.org/10.1016/s0889-5406(96)70162-2
Hayashi K, Uechi J, Murata M, Mizoguchi I. Comparison of maxillary canine retraction with sliding mechanics and a retraction spring: a three-dimensional analysis based on a midpalatal orthodontic implant. Eur J Orthod. 2004; 26(6): 585–9. DOI: https://doi.org/10.1093/ejo/26.6.585
Kusy RP, Whitley JQ. Influence of fluid media on the frictional coefficients in orthodontic sliding. Semin Orthod. 2003; 9(4): 281–9. DOI: https://doi.org/10.1016/j.sodo.2003.08.007
Baker KL, Nieberg LG, Weimer AD, Hanna M. Frictional changes in force values caused by saliva substitution. Am J Orthod Dentofac Orthop. 1987; 91(4): 316–20. DOI: https://doi.org/10.1016/0889-5406(87)90173-9
Kusy RP, Whitley JQ, Prewitt MJ. Comparison of the frictional coefficients for selected archwire-bracket slot combinations in the dry and wet states. Angle Orthod. 1991; 61(4): 293–302. DOI: https://doi.org/10.1043/0003-3219(1991)061%3C0293:cotfcf%3E2.0.co;2
Kapur R, Sinha PK, Nanda RS. Comparison of frictional resistance in titanium and stainless steel brackets. Am J Orthod Dentofac Orthop. 1999; 116(3): 271–4. DOI: https://doi.org/10.1016/s0889-5406(99)70237-4
Michelberger DJ, Eadie RL, Faulkner MG, Glover KE, Prasad NG, Major PW. The friction and wear patterns of orthodontic brackets and archwires in the dry state. Am J Orthod Dentofac Orthop. 2000; 118(6): 662–74. DOI: https://doi.org/10.1067/mod.2000.105529
Kusy RP, Whitley JQ, Ambrose WW, Newman JG. Evaluation of titanium brackets for orthodontic treatment: part I. The passive configuration. Am J Orthod Dentofac Orthop. 1998; 114(5): 558–72. DOI: https://doi.org/10.1016/S0889-5406(98)70176-3
Kusy RP, O’Grady PW. Evaluation of titanium brackets for orthodontic treatment: part II. The active configuration. Am J Orthod Dentofac Orthop. 2000; 118(6): 675–84. DOI: https://doi.org/10.1067/mod.2000.97818
Rapiejko C, Fouvry S, Grosgogeat B, Wendler B. A representative ex-situ fretting wear investigation of orthodontic arch-wire/bracket contacts. Wear. 2009; 266(7–8): 850–8. DOI: https://doi.org/10.1016/j.wear.2008.12.013
Akaike S, Hayakawa T, Kobayashi D, Aono Y, Hirata A, Hiratsuka M, et al. Reduction in static friction by deposition of a homogeneous diamond-like carbon (DLC) coating on orthodontic brackets. Dent Mater J. 2015; 34(6): 888–95. DOI: https://doi.org/10.4012/dmj.2015-130
Zhang H, Guo S, Wang D, Zhou T, Wang L, Ma J. Effects of nanostructured, diamondlike, carbon coating and nitrocarburizing on the frictional properties and biocompatibility of orthodontic stainless-steel wires. Angle Orthod. 2016; 86(5): 782–8. DOI: https://doi.org/10.2319/090715-602.1
Sioshansi P, Tobin EJ. Surface treatment of biomaterials by ion beam processes. Surf Coatings Technol. 1996; 83(1–3): 175–82. DOI: https://doi.org/10.1016/0257-8972(95)02838-2
Ryan R, Walker G, Freeman K, Cisneros GJ. The effects of ion implantation on rate of tooth movement: an in vitro model. Am J Orthod Dentofac Orthop. 1997; 112(1): 64–8. DOI: https://doi.org/10.1016/s0889-5406(97)70275-0
Boccio F, Gil Mur FJ, Membrive A, Alfonso MV, Solano E, Planell Estany JA. Optimización superficial de alambres de ortodoncia de Ni-Ti superelástico mediante nitruración gaseosa. Parte II: cuantificación de la mejora de la nanodureza y el coeficiente de fricción. Biomecánica. 1999; 7(13): 39–45. DOI: http://dx.doi.org/10.5821/sibb.v7i13.1626
Kusy RP, Whitley JQ, Gurgel JDA. Comparisons of surface roughnesses and sliding resistances of 6 titanium-based or TMA-type archwires. Am J Orthod Dentofac Orthop. 2004; 126(5): 589–603. DOI: https://doi.org/10.1016/j.ajodo.2003.09.034
Scherer GW. Sintering of sol-gel films. J Sol-Gel Sci Technol. 1997; 8(1–3): 353–63. DOI: https://doi.org/10.1007/BF02436865
Valencia J, Montoya Goez Y, Pelaez-Vargas A, Jaramillo Vallejo PM, García Garcia C. Friction evaluation in stainless steel arches with and without glass coating using the sol-gel method. Rev Fac Odontol Univ Antioq. 2009; 20(2): 161–70.
Rendón Arias LA, Cano Correa GA, Pelaez Vargas A, Jaramillo Vallejo PM, García García C, Montoya Góez Y. In vitro evaluation of frictional resistance between ceramic brackets and orthodontic steel wires with and without glass coatings applied by Sol-Gel method. Rev Fac Odontol Univ Antioq. 2008; 20(1): 58–71.
Oh K-T, Choo S-U, Kim K-M, Kim K-N. A stainless-steel bracket for orthodontic application. Eur J Orthod. 2005; 27(3): 237–44. DOI: https://doi.org/10.1093/ejo/cji005
Iijima M, Endo K, Yuasa T, Ohno H, Hayashi K, Kakizaki M, et al. Galvanic corrosion behavior of orthodontic archwire alloys coupled to bracket alloys. Angle Orthod. 2006; 76(4): 705–11. DOI: https://doi.org/10.1043/0003-3219(2006)076[0705:gcbooa]2.0.co;2
Lee SH, Chang Y Il. Effects of recycling on the mechanical properties and the surface topography of nickel-titanium alloy wires. Am J Orthod Dentofac Orthop. 2001; 120(6): 654–63. DOI: https://doi.org/10.1067/mod.2001.118997
Redlich M, Tenne R. Chapter 13: nanoparticle coating of orthodontic appliances for friction reduction. Nanobiomaterials in Clinical Dentistry. Elsevier Inc.; 2013. 259–79 p. DOI: https://doi.org/10.1016/B978-1-4557-3127-5.00013-1
Subramani K, Subbiah U, Huja S. Chapter 11: nanotechnology in orthodontics—1: the past, present, and a perspective of the future. Nanobiomaterials in Clinical Dentistry. Elsevier Inc.; 2019. 277–98 p. DOI: https://doi.org/10.1016/B978-0-12-815886-9.00011-5
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 Revista Facultad de Odontología Universidad de Antioquia
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
Copyright comprises moral and patrimonial rights.
1. Moral rights: are born at the moment of the creation of the work, without the need to register it. They belong to the author in a personal and unrelinquishable manner; also, they are imprescriptible, unalienable and non negotiable. Moral rights are the right to paternity of the work, the right to integrity of the work, the right to maintain the work unedited or to publish it under a pseudonym or anonymously, the right to modify the work, the right to repent and, the right to be mentioned, in accordance with the definitions established in article 40 of Intellectual property bylaws of the Universidad (RECTORAL RESOLUTION 21231 of 2005).
2. Patrimonial rights: they consist of the capacity of financially dispose and benefit from the work trough any mean. Also, the patrimonial rights are relinquishable, attachable, prescriptive, temporary and transmissible, and they are caused with the publication or divulgation of the work. To the effect of publication of articles in the journal Revista de la Facultad de Odontología, it is understood that Universidad de Antioquia is the owner of the patrimonial rights of the contents of the publication.
The content of the publications is the exclusive responsibility of the authors. Neither the printing press, nor the editors, nor the Editorial Board will be responsible for the use of the information contained in the articles.
I, we, the author(s), and through me (us), the Entity for which I, am (are) working, hereby transfer in a total and definitive manner and without any limitation, to the Revista Facultad de Odontología Universidad de Antioquia, the patrimonial rights corresponding to the article presented for physical and digital publication. I also declare that neither this article, nor part of it has been published in another journal.
Open Access Policy
The articles published in our Journal are fully open access, as we consider that providing the public with free access to research contributes to a greater global exchange of knowledge.
Creative Commons License
The Journal offers its content to third parties without any kind of economic compensation or embargo on the articles. Articles are published under the terms of a Creative Commons license, known as Attribution – NonCommercial – Share Alike (BY-NC-SA), which permits use, distribution and reproduction in any medium, provided that the original work is properly cited and that the new productions are licensed under the same conditions.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.