Effect of increasing levels of Chlorella spp. on the in vitro fermentation and methane production of a corn silage-based diet

Authors

  • Juan de J Vargas University of Florida
  • Federico Tarnonsky University of Florida
  • Araceli Maderal University of Florida
  • Ignacio Fernández-Marenchino University of Florida
  • Federico Podversich University of Florida
  • Tessa M Schulmeister University of Florida
  • Nicolás DiLorenzo University of Florida

DOI:

https://doi.org/10.17533/udea.rccp.v37n1a2

Keywords:

additives, backgrounding systems, cow-calf operations, ensiled forages, green micro-algae, low-protein diets, methanogenesis, protein supplementation

Abstract

Background: Generally, the forages used in cow-calf and backgrounding cattle operations have low crude protein and high fiber concentration, limiting animal performance and increasing greenhouse gas emissions. Chlorella spp., a green micro-alga, shows promising potential to provide nutrients, especially nitrogen, to low-protein diets. However, information is limited regarding the effects of Chlorella spp. on the in vitro fermentation and methane (CH4) production of diets. Objective: To evaluate the effects of increasing inclusion levels of algae (Chlorella spp.) on ruminal in vitro fermentation profile and CH4 production of a corn silage-based diet. Methods: Incubations were conducted on three separate days using corn silage and gin trash as substrate (70:30 ratio, respectively). Treatments were control (without algae) and 1, 5, and 10% of algae inclusion in the substrate replacing the basal diet. Ruminal fluid was collected from two ruminally cannulated Angus crossbred steers fed ad libitum a corn silage and gin trash diet. Final pH, concentration of volatile fatty acids (VFA) and ammonia nitrogen (NH3-N), in vitro organic matter digestibility (IVOMD), total gas, and CH4 production were determined after 24 h of incubation. Variables were evaluated. using the MIXED procedure of SAS software, and means were compared using orthogonal polynomial contrasts. Results: Algae inclusion linearly increased (p<0.01) the IVOMD. However, the final pH and concentration of VFA and NH3-N did not differ (p>0.05) among algae levels. Molar proportion of VFA and the acetate:propionate ratio was not affected (p>0.05) by increasing algae inclusion. Finally, total gas and CH4 production were not different (p>0.05) among treatments. Conclusion: The inclusion of Chlorella spp. does not modify the ruminal in vitro fermentation profile nor the CH4 production of a corn silage-based diet.

|Abstract
= 349 veces | PDF
= 303 veces| | HTML
= 0 veces|

Downloads

Download data is not yet available.

Author Biographies

Juan de J Vargas, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, USA
https://orcid.org/0000-0002-7674-3850

Federico Tarnonsky, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, USA
https://orcid.org/0000-0002-5563-1956

Araceli Maderal, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, USA
https://orcid.org/0000-0003-2267-1131

Ignacio Fernández-Marenchino, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, USA
https://orcid.org/0000-0001-6712-9587

Federico Podversich, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, USA
https://orcid.org/0000-0003-0852-790X

Tessa M Schulmeister, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, U
https://orcid.org/0000-0002-8297-7442

Nicolás DiLorenzo, University of Florida

North Florida Research and Education Center. University of Florida. Marianna, FL, USA
https://orcid.org/0000-0001-5174-3427

References

Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh PJ, Waters S, Xing X. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020; 10(12):2432. https://doi.org/10.3390/ani10122432.

Amaro FX, Kim D, Agarussi MCN, Silva VP, Fernandes T, Arriola KG, Jiang Y, Cervantes AP, Adesogan AT, Ferraretto LF, Yu S, Li W, Vyas D. Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Transl Anim Sci 2021; 5(1): 1–16. https://doi.org/10.1093/tas/txaa222.

Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric Syst 2010; 103(6): 371–379. https://doi.org/10.1016/j.agsy.2010.03.008.

Beauchemin KA, McGinn SM, Benchaar C, Holtshausen L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J Dairy Sci 2009; 92(5):2118–2127. https://doi.org/10.3168/jds.2008-1903.

Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA. Nutritional management for enteric methane abatement: A review. Aust J Exp Agric 2008; 48(2):21–27. https://doi.org/10.1071/EA07199

Becker EW. Micro-algae as a source of protein. Biotechnol Adv 2007; 25(2):207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002.

Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci 1980; 63(1):64–75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8.

Currier TA, Bohnert DW, Falck SJ, Schauer CS, Bartle SJ. Daily and alternate-day supplementation of urea or biuret to ruminants consuming low-quality forage: II. Effects on site of digestion and microbial efficiency in steers. J Anim Sci 2004; 82(5):1518–1527. https://doi.org/10.2527/2004.8251518X.

Dijkstra J, Kebreab E, Bannink A, France J, López S. Application of the gas production technique to feed evaluation systems for ruminants. Anim Feed Sci Technol 2005; 123-124(1):561–578. https://doi.org/10.1016/j.anifeedsci.2005.04.048.

Drewery ML, Sawyer JE, Pinchak WE, Wickersham TA. Effect of increasing amounts of postextraction algal residue on straw utilization in steers. J Anim Sci 2014; 92(10):4642–4649. https://doi.org/10.2527/jas.2014-7795.

Dubois B, Tomkins NW, Kinley RD, Bai M, Seymour S, Paul NA, de Nys R. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013; 4(12b): 34–43. http://dx.doi.org/10.4236/ajps.2013.412A2005

Fievez V, Boeckaert C, Vlaeminck B, Mestdagh J, Demeyer D. In vitro examination of DHA-edible micro-algae. 2. Effect on rumen methane production and apparent degradability of hay. Anim Feed Sci Technol 2007; 136(1-2):80–95. http://dx.doi.org/10.1016/j.anifeedsci.2006.08.016.

Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; 2013. Available on-line: https://www.fao.org/3/i3437e/i3437e.pdf

Hess HD, Monsalve LM, Lascano CE, Carulla JE, Díaz TE, Kreuzer M. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agric Res 2003; 54(7):703–713. https://doi.org/10.1071/AR02241

Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. 2013a. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 2013a; 91(11):5045–5069. https://doi.org/10.2527/jas.2013-6583.

Hristov AN, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E, Oosting SJ, Gerber PJ, Henderson B, Makkar HPS, Firkins JL. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J Anim Sci 2013b; 91(11):5095–5113. https://doi.org/10.2527/jas.2013-6585.

Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 2010; 160(1-2):1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002

Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995; 73(8):2483-2492. https://doi.org/10.2527/1995.7382483x

Kiani A, olf C, Giller K, Eggerschwiler L, Kreuzer M, Schwarm A. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Can J Anim Sci 2020; 100(3):485–493. doi: https://doi.org/10.1139/cjas-2019-0187.

Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014; 97(6):3231–3261. doi: https://doi.org/10.3168/jds.2013-7234.

Kurihara M, Magner T, Hunter RA, Mccrabb GJ. Methane production and energy partition of cattle in the tropics. Br J Nutr 1999; 81(3): 227–234. https://doi.org/10.1017/S0007114599000422.

Lamminen M, Halmemies-Beauchet-Filleau A, Kokkonen T, Jaakkola S, Vanhatalo A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim Feed Sci Technol 2019; 247:112–126. https://doi.org/10.1016/j.anifeedsci.2018.11.005.

Lodge-ivey SL, Tracey LN, Salazar A. The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets. J Anim Sci 2014; 92(4):1331–1342. https://doi.org/10.2527/jas.2013-7027

Leng RA. The potential of feeding nitrate to reduce enteric methane production by ruminants. The department of climate change. Commonwealth Government of Australia. Canberra, Australia. 2008.

Machado L, Magnusson M, Paul NA, Kinley R, de Nys R, Tomkins N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J Appl Phycol 2016; 28:3117–3126. https://doi.org/10.1007/s10811-016-0830-7.

McCann JC, Drewery ML, Sawyer JE, Pinchak WE, Wickersham TA. Effect of postextraction algal residue supplementation on the ruminal microbiome of steers consuming low-quality forage. J Anim Sci 2014; 92(11):5063–5075. https://doi.org/10.2527/jas.2014-7811.

McCauley JI, Labeeuw L, Jaramillo-Madrid AC, Nguyen LN, Nghiem LD, Chaves AV, Ralph PJ. Management of enteric methanogenesis in ruminants by algal-derived feed additives. Curr Pollut Rep 2020; 6:188–205. https://doi.org/10.1007/s40726-020-00151-7.

Moate PJ, Williams SRO, Hannah MC, Eckard RJ, Auldist MJ, Ribaux BE, Jacobs JL, Wales WJ. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J Dairy Sci 2013; 96(5):3177–3188. https://doi.org/10.3168/jds.2012-6168.

Murphy MR, Baldwin RL, Koong LJ. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Anim Sci 1982; 55(2):411–421. https://doi.org/10.2527/jas1982.552411x

Pardo O, Carulla JE, Hess HD. Efecto de la relación proteína y energía sobre los niveles de amonio ruminal y nitrógeno ureico en sangre y leche, de vacas doble propósito del piedemonte llanero, Colombia. Rev Colomb Cienc Pecu 2009; 21: 387–397. https://revistas.udea.edu.co/index.php/rccp/article/view/324309/20781482

Ruiz-Moreno M, Binversie E, Fessended SW, Stern MD. Mitigation of in vitro hydrogen sulfide production using bismuth subsalisylate with and without monensin in beef feedlot diets. J Anim Sci 2015; 93(11):5346-5354. https://doi.org/10.2527/jas.2015-9392

Silveira ML, Obour AK, Arthington J, Sollenberger LE. The cow-calf industry and water quality in South Florida, USA: A review. Nutr Cycl Agroecosystems 2011; 89:439–452. https://doi.org/10.1007/s10705-010-9407-z.

Sniffen CJ, O'Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 1992; 70(11):3562-3577. https://doi.org/10.2527/1992.70113562x

Tarnonsky F, Vargas J, Maderal A, Heredia D, Fernandez-Marenchino, Cuervo W, Podversich F, Schulmeister TM, Chebel RC, Gonella-Diaza A, DiLorenzo N. Evaluation of carinata meal and cottonseed meal on behavior, nutrient digestibility and performance on beef heifers consuming a silage-based diet. J Anim Sci 2023; 101:1-10. https://doi.org/10.1093/jas/skac402

Tiemann TT, Lascano CE, Kreuzer M, Hess HD. The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J Sci Food Agric 2008; 88(10):1794–1803. https://doi.org/10.1002/jsfa.3282.

Ungerfeld EM. Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Front Microbiol 2015a; 6:1272. https://doi.org/10.3389/fmicb.2015.01272.

Wild KJ, Trautmann A, Katzenmeyer M, Steingaß H, Posten C, Rodehutscord M. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions. Algal Res 2019a; 38:101385. https://doi.org/10.1016/j.algal.2018.101385.

Wild KJ, Steingaß H, Rodehutscord M. Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioener 2019b; 11(1):345–359. https://doi.org/10.1111/gcbb.12539

Downloads

Published

2023-07-13

How to Cite

Vargas, J. de J., Tarnonsky, F., Maderal, A., Fernández-Marenchino, I., Podversich, F., Schulmeister, T. M., & DiLorenzo, N. (2023). Effect of increasing levels of Chlorella spp. on the in vitro fermentation and methane production of a corn silage-based diet. Revista Colombiana De Ciencias Pecuarias, 37(1), 42–51. https://doi.org/10.17533/udea.rccp.v37n1a2

Issue

Section

Short communications