Efecto del incremento de los niveles de Chlorella spp. sobre la fermentación in vitro y la producción de metano en una dieta a base de ensilaje de maíz
DOI:
https://doi.org/10.17533/udea.rccp.v37n1a2Palabras clave:
aditivos, dietas bajas en proteína, forrajes conservados, metanogénesis, microalgas verdes, sistemas de cría, sistemas de levante, suplementación proteicaResumen
Antecedentes: Generalmente, los forrajes en los sistemas de producción de cría y levante de ganado tienen baja cantidad de proteína cruda y alta de fibra, limitando la productividad animal e incrementando la emisión de gases de efecto invernadero. Chlorella spp., una microalga verde, presenta características promisorias para proveer nutrientes, especialmente nitrógeno, en dietas bajas en proteína. Sin embargo, existe información limitada relacionada con la inclusión de Chlorella spp. sobre la fermentación y la producción de metano (CH4) in vitro de la dieta. Objetivo: Evaluar el efecto de incrementar la inclusión de alga (Chlorella spp.) sobre el perfil de fermentación in vitro y la producción de CH4 de una dieta basada en ensilaje de maíz. Métodos: Las incubaciones fueron realizadas en tres días diferentes usando ensilaje de maíz y residuo de algodón como sustrato (en relación 70:30, respectivamente). Los tratamientos fueron: un tratamiento control (sin alga), e inclusiones de 1, 5 y 10% de alga en el sustrato. El fluido ruminal fue colectado de dos novillos mestizos Angus con cánula ruminal, alimentados con una dieta de ensilaje de maíz y residuo de algodón a voluntad. El pH final, la concentración de ácidos grasos volátiles (VFA) y nitrógeno amoniacal (NH3-N), la digestibilidad in vitro de la materia orgánica (IVOMD), y la producción de gas total y CH4 fueron determinadas después de 24 h de fermentación. Las variables fueron evaluadas usando el procedimiento MIXED del software SAS y las medias fueron comparadas usando contrastes de polinomios ortogonales. Resultados: Niveles crecientes de alga incrementaron (p<0,01) linealmente la IVOMD. Sin embargo, el pH final y la concentración de AGV y NH3-N no fueron diferentes (p>0,05) entre los niveles de alga. Además, las proporciones molares de VFA y la relación acetato:propionato no se afectaron con el incremento (p>0,05) en la concentración de alga. Finalmente, la producción de gas y de CH4 no fueron diferentes (p>0,05) entre tratamientos. Conclusión: La inclusión de Chlorella spp. no modifica la fermentación in vitro ni la producción de CH4 en una dieta basada en ensilaje de maíz.
Descargas
Citas
Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh PJ, Waters S, Xing X. Seaweed and seaweed bioactives for mitigation of enteric methane: Challenges and opportunities. Animals 2020; 10(12):2432. https://doi.org/10.3390/ani10122432.
Amaro FX, Kim D, Agarussi MCN, Silva VP, Fernandes T, Arriola KG, Jiang Y, Cervantes AP, Adesogan AT, Ferraretto LF, Yu S, Li W, Vyas D. Effects of exogenous α-amylases, glucoamylases, and proteases on ruminal in vitro dry matter and starch digestibility, gas production, and volatile fatty acids of mature dent corn grain. Transl Anim Sci 2021; 5(1): 1–16. https://doi.org/10.1093/tas/txaa222.
Beauchemin KA, Janzen HH, Little SM, McAllister TA, McGinn SM. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: A case study. Agric Syst 2010; 103(6): 371–379. https://doi.org/10.1016/j.agsy.2010.03.008.
Beauchemin KA, McGinn SM, Benchaar C, Holtshausen L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J Dairy Sci 2009; 92(5):2118–2127. https://doi.org/10.3168/jds.2008-1903.
Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA. Nutritional management for enteric methane abatement: A review. Aust J Exp Agric 2008; 48(2):21–27. https://doi.org/10.1071/EA07199
Becker EW. Micro-algae as a source of protein. Biotechnol Adv 2007; 25(2):207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002.
Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci 1980; 63(1):64–75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8.
Currier TA, Bohnert DW, Falck SJ, Schauer CS, Bartle SJ. Daily and alternate-day supplementation of urea or biuret to ruminants consuming low-quality forage: II. Effects on site of digestion and microbial efficiency in steers. J Anim Sci 2004; 82(5):1518–1527. https://doi.org/10.2527/2004.8251518X.
Dijkstra J, Kebreab E, Bannink A, France J, López S. Application of the gas production technique to feed evaluation systems for ruminants. Anim Feed Sci Technol 2005; 123-124(1):561–578. https://doi.org/10.1016/j.anifeedsci.2005.04.048.
Drewery ML, Sawyer JE, Pinchak WE, Wickersham TA. Effect of increasing amounts of postextraction algal residue on straw utilization in steers. J Anim Sci 2014; 92(10):4642–4649. https://doi.org/10.2527/jas.2014-7795.
Dubois B, Tomkins NW, Kinley RD, Bai M, Seymour S, Paul NA, de Nys R. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013; 4(12b): 34–43. http://dx.doi.org/10.4236/ajps.2013.412A2005
Fievez V, Boeckaert C, Vlaeminck B, Mestdagh J, Demeyer D. In vitro examination of DHA-edible micro-algae. 2. Effect on rumen methane production and apparent degradability of hay. Anim Feed Sci Technol 2007; 136(1-2):80–95. http://dx.doi.org/10.1016/j.anifeedsci.2006.08.016.
Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; 2013. Available on-line: https://www.fao.org/3/i3437e/i3437e.pdf
Hess HD, Monsalve LM, Lascano CE, Carulla JE, Díaz TE, Kreuzer M. Supplementation of a tropical grass diet with forage legumes and Sapindus saponaria fruits: Effects on in vitro ruminal nitrogen turnover and methanogenesis. Aust J Agric Res 2003; 54(7):703–713. https://doi.org/10.1071/AR02241
Hristov AN, Oh J, Firkins JL, Dijkstra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W, Lee C, Gerber PJ, Henderson B, Tricarico JM. 2013a. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci 2013a; 91(11):5045–5069. https://doi.org/10.2527/jas.2013-6583.
Hristov AN, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E, Oosting SJ, Gerber PJ, Henderson B, Makkar HPS, Firkins JL. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J Anim Sci 2013b; 91(11):5095–5113. https://doi.org/10.2527/jas.2013-6585.
Janssen PH. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim Feed Sci Technol 2010; 160(1-2):1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002
Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci 1995; 73(8):2483-2492. https://doi.org/10.2527/1995.7382483x
Kiani A, olf C, Giller K, Eggerschwiler L, Kreuzer M, Schwarm A. In vitro ruminal fermentation and methane inhibitory effect of three species of microalgae. Can J Anim Sci 2020; 100(3):485–493. doi: https://doi.org/10.1139/cjas-2019-0187.
Knapp JR, Laur GL, Vadas PA, Weiss WP, Tricarico JM. Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J Dairy Sci 2014; 97(6):3231–3261. doi: https://doi.org/10.3168/jds.2013-7234.
Kurihara M, Magner T, Hunter RA, Mccrabb GJ. Methane production and energy partition of cattle in the tropics. Br J Nutr 1999; 81(3): 227–234. https://doi.org/10.1017/S0007114599000422.
Lamminen M, Halmemies-Beauchet-Filleau A, Kokkonen T, Jaakkola S, Vanhatalo A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim Feed Sci Technol 2019; 247:112–126. https://doi.org/10.1016/j.anifeedsci.2018.11.005.
Lodge-ivey SL, Tracey LN, Salazar A. The utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets. J Anim Sci 2014; 92(4):1331–1342. https://doi.org/10.2527/jas.2013-7027
Leng RA. The potential of feeding nitrate to reduce enteric methane production by ruminants. The department of climate change. Commonwealth Government of Australia. Canberra, Australia. 2008.
Machado L, Magnusson M, Paul NA, Kinley R, de Nys R, Tomkins N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J Appl Phycol 2016; 28:3117–3126. https://doi.org/10.1007/s10811-016-0830-7.
McCann JC, Drewery ML, Sawyer JE, Pinchak WE, Wickersham TA. Effect of postextraction algal residue supplementation on the ruminal microbiome of steers consuming low-quality forage. J Anim Sci 2014; 92(11):5063–5075. https://doi.org/10.2527/jas.2014-7811.
McCauley JI, Labeeuw L, Jaramillo-Madrid AC, Nguyen LN, Nghiem LD, Chaves AV, Ralph PJ. Management of enteric methanogenesis in ruminants by algal-derived feed additives. Curr Pollut Rep 2020; 6:188–205. https://doi.org/10.1007/s40726-020-00151-7.
Moate PJ, Williams SRO, Hannah MC, Eckard RJ, Auldist MJ, Ribaux BE, Jacobs JL, Wales WJ. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J Dairy Sci 2013; 96(5):3177–3188. https://doi.org/10.3168/jds.2012-6168.
Murphy MR, Baldwin RL, Koong LJ. Estimation of stoichiometric parameters for rumen fermentation of roughage and concentrate diets. J Anim Sci 1982; 55(2):411–421. https://doi.org/10.2527/jas1982.552411x
Pardo O, Carulla JE, Hess HD. Efecto de la relación proteína y energía sobre los niveles de amonio ruminal y nitrógeno ureico en sangre y leche, de vacas doble propósito del piedemonte llanero, Colombia. Rev Colomb Cienc Pecu 2009; 21: 387–397. https://revistas.udea.edu.co/index.php/rccp/article/view/324309/20781482
Ruiz-Moreno M, Binversie E, Fessended SW, Stern MD. Mitigation of in vitro hydrogen sulfide production using bismuth subsalisylate with and without monensin in beef feedlot diets. J Anim Sci 2015; 93(11):5346-5354. https://doi.org/10.2527/jas.2015-9392
Silveira ML, Obour AK, Arthington J, Sollenberger LE. The cow-calf industry and water quality in South Florida, USA: A review. Nutr Cycl Agroecosystems 2011; 89:439–452. https://doi.org/10.1007/s10705-010-9407-z.
Sniffen CJ, O'Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci 1992; 70(11):3562-3577. https://doi.org/10.2527/1992.70113562x
Tarnonsky F, Vargas J, Maderal A, Heredia D, Fernandez-Marenchino, Cuervo W, Podversich F, Schulmeister TM, Chebel RC, Gonella-Diaza A, DiLorenzo N. Evaluation of carinata meal and cottonseed meal on behavior, nutrient digestibility and performance on beef heifers consuming a silage-based diet. J Anim Sci 2023; 101:1-10. https://doi.org/10.1093/jas/skac402
Tiemann TT, Lascano CE, Kreuzer M, Hess HD. The ruminal degradability of fibre explains part of the low nutritional value and reduced methanogenesis in highly tanniniferous tropical legumes. J Sci Food Agric 2008; 88(10):1794–1803. https://doi.org/10.1002/jsfa.3282.
Ungerfeld EM. Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Front Microbiol 2015a; 6:1272. https://doi.org/10.3389/fmicb.2015.01272.
Wild KJ, Trautmann A, Katzenmeyer M, Steingaß H, Posten C, Rodehutscord M. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions. Algal Res 2019a; 38:101385. https://doi.org/10.1016/j.algal.2018.101385.
Wild KJ, Steingaß H, Rodehutscord M. Variability of in vitro ruminal fermentation and nutritional value of cell-disrupted and nondisrupted microalgae for ruminants. GCB Bioener 2019b; 11(1):345–359. https://doi.org/10.1111/gcbb.12539
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Colombiana de Ciencias Pecuarias

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Los autores permiten a RCCP reimprimir el material publicado en él.
La revista permite que los autores tengan los derechos de autor sin restricciones, y permitirá que los autores conserven los derechos de publicación sin restricciones.