Diversidad y estructura poblacional de las razas bovinas Criollo Lechero Tropical y Romosinuano en México

Autores/as

  • Ricardo E Martínez-Rocha Universidad Autónoma Chapingo
  • Gaspar Manuel Parra-Bracamonte Instituto Politécnico Nacional
  • Rodolfo Ramírez-Valverde Universidad Autónoma Chapingo
  • Rafael Núñez-Domínguez Universidad Autónoma Chapingo
  • José G García-Muñiz Universidad Autónoma Chapingo

DOI:

https://doi.org/10.17533/udea.rccp.v37n3a2

Palabras clave:

bovinos, Criollo Lechero Tropical, diversidad genética, endogamia, estructura de la población, marcadores de ADN, Romosinuano, tamaño efectivo de la población

Resumen

Antecedentes: La evaluación de la diversidad genética, de la estructura de la población y de las relaciones dentro y entre razas utilizando marcadores de ADN es esencial para el desarrollo de programas de conservación y mejora genética. Objetivo: Evaluar la diversidad genética y la estructura poblacional de las razas bovinas Criollo Lechero Tropical (CLT) y Romosinuano (ROMO) de México y compararlas con otras razas criollas y españolas. Métodos: El estudio incluyó genotipos CLT y ROMO de la matriz Axiom©BovMDv3 de 65k. Los datos genómicos de razas criollas y españolas fueron obtenidos de un repositorio. La diversidad genética entre razas se evaluó mediante el FST de Wright para pares de razas, componentes principales, y análisis de estructura. Resultados: La heterocigosidad observada y esperada, el coeficiente de endogamia y el tamaño efectivo de la población (Ne) fueron 0,31, 0,30, -0,018 y 56 en CLT, y 0,32, 0,31, -0,023 y 99 en ROMO, respectivamente. El FST de Wright indicó que ambas razas están relacionadas con el criollo americano y algunos bovinos españoles. El ganado ROMO muestra una ascendencia española más significativa que el CLT. Conclusiones: El estudio presenta evidencia novedosa que indica que aunque el Ne de estas razas es pequeño, todavía son diversas y pueden ser utilizadas como reservorios genéticos en programas de conservación.

|Resumen
= 242 veces | PDF (ENGLISH)
= 210 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ricardo E Martínez-Rocha, Universidad Autónoma Chapingo

Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Chapingo, México
https://orcid.org/0000-0002-7316-4589

Gaspar Manuel Parra-Bracamonte, Instituto Politécnico Nacional

Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710, Reynosa, México
https://orcid.org/0000-0002-9327-2042

Rodolfo Ramírez-Valverde, Universidad Autónoma Chapingo

Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Chapingo, México
https://orcid.org/0000-0002-3185-8494

Rafael Núñez-Domínguez, Universidad Autónoma Chapingo

Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Chapingo, México.
https://orcid.org/0000-0002-1447-4632

José G García-Muñiz, Universidad Autónoma Chapingo

Posgrado en Producción Animal, Departamento de Zootecnia, Universidad Autónoma Chapingo, 56230, Chapingo, México
https://orcid.org/0000-0001-8335-2586

Citas

Ajmone-Marsan P, Garcia F, Lenstra JA. On the origin of cattle: how aurochs became cattle and colonized the world. Evol Anthropol 2010; 19(4): 148–157. https://doi.org/10.1002/evan20267.

Barbato M, Orozco-terWengel P, Tapio M, Bruford MW. SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet 2015; 6: 109. https://doi.org/10.3389/fgene.2015.00109.

Becerril-Pérez CM, Álvarez-Cepeda AA, Rosendo-Ponce A, Alonso-Morales RA. Kappa-casein genotyping in tropical milking Criollo and its association to milk production and composition. Trop Anim Health Prod 2020; 52(6): 3885–3888. https://doi.org/10.1007/s11250-020-02317-3.

Carroll JA, Burdick NC, Reutera RR, Chase CCJr, Spiers DE, Arthington JD, Coleman SW. Differential acute phase immune responses by Angus and Romosinuano steers following an endotoxin challenge. Domest Anim Endocrinol 2011; 41(4): 163-173. https://doi.org/10.1016/j. domaniend.2011.06.002

Carroll JA, Burdick NC, Chase CCJr, Coleman SW, Spiers DE. Influence of environmental temperature on the physiological, endocrine, and immune responses in livestock exposed to a provocative immune challenge. Domest Anim Endocrinol 2012; 43(2): 146-153. https://doi. org/10.1016/j.domaniend.2011.12.008

De Alba JM. El libro de los bovinos criollos en América. Mexico DF: Mundi Prensa Mexico; 2011.

Decker JE, Mckay SD, Rolf MM, Kim J, Alcalá AM, Sonstegard TS, Hanotte O, Seabury CM, Praharani L, Go A, Liu W, Lei C, Reecy JM, Saif-ur-rehman M, Schnabel RD, Taylor JF. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle, PLOS Genet 2014a; 10(3): e1004254. https://doi.org/10.1371/journal.pgen.1004254.

Decker JE, McKay SD, Rolf MM, Kim J, Alcalá AM, Sonstegard TS, Taylor JF. Data from: Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. Dryad Digital Repository 2014b. https://doi.org/10.5061/dryad.th092.

Decker JE, Pires JC, Conant GC, McKay SD, Heaton MP, Chen K, Cooper A, Vilkki J, Seabury CM, Caetano AR, Johnson GS, Brenneman RA, Hanotte O, Eggert LS, Wiener P, Kim J-J, Kim KS, Sonstegard TS, Van Tassell CP, Neibergs HL, McEwan JC, Brauning R, Coutinho LL, Babar ME, Wilson GA, McClure MC, Rolf MM, Kim J, Schnabel RD, Taylor JF. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc Natl Acad Sci USA 2009; 106(44): 18644 LP-18649. https://doi.org/10.1073/pnas.0904691106.

Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 2012; 4(2): 359–361. https://doi.org/10.1007/s12686-011-9548-7.

Eusebi PG, Cortés O, Dunner S, Cañón J. Genomic diversity and population structure of Mexican and Spanish bovine Lidia breed. Anim Genet 2017; 48(6): 682–685. https://doi.org/https://doi.org/10.1111/age.12618.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005; 14(8): 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x.

Food and Agriculture Organization of the United Nations (FAO). Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of Small Populations at Risk. Rome, Italy; 1998.

Food and Agriculture Organization of the United Nations (FAO). In vivo conservation of animal genetic resources. Animal Production and Health Guidelines 14. Rome Italy; 2013.

Gautier M, Laloë D, Moazami-Goudarzi K. Insights into the genetic history of French cattle from dense SNP data on 47 worldwide breeds. PLoS One 2010; 5(9): e13038. https://doi.org/10.1371/journal.pone.0013038.

Ginja C, Gama LT, Cortés O, Burriel IM, Vega-Pla JL, Penedo C, Sponenberg P, Cañón J, Sanz A, Alves A, Alvarez LA, Giovambattista G, Agha S, Rogberg-Muñoz A, Lara MAC, Consortium B, Delgado JV, Martinez A. The genetic ancestry of American Creole cattle inferred from uniparental and autosomal genetic markers. Sci Rep 2019; 9(1): 11486. https://doi.org/10.1038/s41598-019-47636-0.

Hammond AC, Olson TA, Chase Jr CC, Bowers EJ, Randel RD, Murphy CN, Vogt DW, Tewolde A. Heat tolerance in two tropically adapted Bos taurus breeds, Senepol and Romosinuano, compared with Brahman, Angus, and Hereford cattle in Florida. J Anim Sci 1996; 74(2): 295–303. https://doi.org/10.2527/1996.742295x.

Hidalgo J, Cesarani A, Garcia A, Sumreddee P, Larios N, Mancin E, García JG, Núñez R, Ramírez R. Genetic background and inbreeding depression in Romosinuano cattle breed in Mexico. Anim 2021; 11(2): 321. https://doi.org/10.3390/ani11020321.

Im HK, Wheeler HE, Michaels KA, Trubetskoy V. Package ‘OmicKriging’ 2016. https://pbil.univ-lyon1.fr/CRAN/web/packages/OmicKriging/OmicKriging.pdf.

Johnson JS, Scharf B, Weaber RL, Eichen PA, Spiers DE. Patterns of heat response and adaptation on summer pasture : A comparison of heat-sensitive (Angus) and -tolerant (Romosinuano) cattle. J Therm Biol 2012; 37(4): 344–350. https://doi.org/10.1016/j.jtherbio.2011.10.014.

Martínez AM, Gama LT, Cañón J, Ginja C, Delgado JV, Dunner S, Landi V, Martín-Burriel I, Penedo MCT, Rodellar C, Vega-Pla JL, Acosta A, Álvarez LA, Camacho E, Cortés O, Marques JR, Martínez R, Martínez RD, Melucci L, Martínez-Velázquez G, Muñoz JE, Postiglioni A, Quiroz J, Sponenberg P, Uffo O, Villalobos A, Zambrano D, Zaragoza P. Genetic footprints of iberian cattle in America 500 years after the arrival of Columbus. PLoS One 2012; 7(11): e49066. https://doi.org/10.1371/journal.pone.0049066.

Mastrangelo S, Saura M, Tolone M, Salces-Ortiz J, Di Gerlando R, Bertolini F, Portolano B. The genome-wide structure of two economically important indigenous Sicilian cattle breeds. J Anim Sci 2014; 92(11): 4833-4842. https://doi.org/10.2527/jas.2014-7898.

Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, Connell JO, Moore SS, Smith TPL, Sonstegard TS, Van Tassell CP. Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 2009; 4(4): e5350. https://doi.org/10.1371/journal.pone.0005350.

Meuwissen T. Genetic management of small populations: A review. Acta Agr Scand A-AN 2009; 59(2): 71–79. https://doi.org/10.1080/09064700903118148.

Miretti MM, Dunner S, Naves M, Contel EP, Ferro JA. Predominant African-derived mtDNA in Caribbean and Brazilian Creole Cattle is also found in Spanish cattle (Bos taurus). J Hered 2004; 95(5): 450–453. https://doi.org/10.1093/jhered/esh070.

Núñez-Domínguez R, Martínez-Rocha RE, Hidalgo-Moreno JA, Ramírez-Valverde R, García-Muñiz JG. Evaluation of the Romosinuano cattle population structure in Mexico using pedigree analysis. Rev Colomb Cienc Pecu 2020; 33(1): 44–59. https://doi.org/10.17533/udea.rccp.v32n4a05.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics 2000; 155(2): 945–959. https://doi.org/10.1093/genetics/155.2.945.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81(3): 559–575. https://doi.org/10.1086/519795.

Qiu Y, Mei J, Guennebaud G, Niesen J. RSpectra: Solvers for Large Scale Eigenvalue and SVD Problems. R Package Version 0.15-0 2019. https://CRAN.R-project.org/package=RSpectra.

Riley DG, Chase CCJr, Coleman SW, Olson TA. Evaluation of birth and weaning traits of Romosinuano calves as purebreds and crosses with Brahman and Angus. J Anim Sci 2007; 85(2): 289-298. https://doi.org/10.2527/jas.2006-416

Riley DG, Burke JM, Chase CC, Coleman SW. Genetic effects for reproductive performance of straightbred and crossbred Romosinuano and Angus cows in a temperate zone. Livest Sci 2015; 180(10): 22–26. https://doi.org/10.1016/j.livsci.2015.06.024.

Rosendo PA, Palacios JAL, Rosales MF, Torres HG, Ramírez VR, Becerril PCM. Genetic variability of Tropical Milking Criollo cattle of Mexico. Rev Colomb Cienc Pecu 2018; 31(3): 196–203. https://doi.org/10.17533/udea.rccp.v31n3a04.

Rosendo-Ponce A, Becerril-Pérez CM. Avance en el conocimiento del bovino Criollo Lechero Tropical en México. Ecos Rec Agrop 2015; 2(5): 233–243. https://era.ujat.mx/index.php/rera/article/view/760/643.

Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Kumar P, Dutt T, Mishra BP, Singh RK. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Anim Biotechnol 2020; 33(2):297-311. https://doi.org/10.1080/10495398.2020.1796696.

Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 2021; 113(3): 955-963. https://doi.org/10.1016/j.ygeno.2021.02.009.

Scharf B, Carroll JA, Riley DG, Chase CCJr, Coleman SW, Keisler DH, Weaber RL, Spiers DE. Evaluation of physiological and blood serum differences in heat-tolerant (Romosinuano) and heat susceptible (Angus) Bos taurus cattle during controlled heat challenge. J Anim Sci 2010; 88(7): 2321-2336. https://doi.org/10.2527/jas.2009- 2551

Sharma A, Lee S-H, Lim D, Chai H-H, Choi B-H, Cho Y. A genome-wide assessment of genetic diversity and population structure of Korean native cattle breeds. BMC Genet 2016; 17: 139. https://doi.org/10.1186/s12863-016-0444-8.

Strucken EM, Gebrehiwot NZ, Swaminathan M, Joshi S, Al Kalaldeh M, Gibson JP. Genetic diversity and effective population sizes of thirteen Indian cattle breeds. Genet Sel Evol 2021; 53(47): 1-17. https://doi.org/10.1186/s12711-021-00640-3.

Weir BS, Cockerham CC. Estimating F-statistics for the analysis of population structure. Evolution 1984; 38(6): 1358–1370. https://doi.org/10.2307/2408641.

Yang J, Lee SH, Goddard ME, Visscher PM. GCTA : A tool for genome-wide complex trait analysis. Am J Hum Genet 2011; 88(1): 76–82. https://doi.org/10.1016/j.ajhg.2010.11.011.

Descargas

Publicado

2023-12-01

Cómo citar

Martínez-Rocha, R. E., Parra-Bracamonte, G. M., Ramírez-Valverde, R., Núñez-Domínguez, R., & García-Muñiz, J. G. (2023). Diversidad y estructura poblacional de las razas bovinas Criollo Lechero Tropical y Romosinuano en México. Revista Colombiana De Ciencias Pecuarias, 37(3), 123–134. https://doi.org/10.17533/udea.rccp.v37n3a2

Número

Sección

Artículos Originales

Artículos más leídos del mismo autor/a