Exploring bovine three-dimensional chondrocyte culture models in osteoarthritis research: A systematic review

Autores/as

DOI:

https://doi.org/10.17533/udea.rccp.357017

Palabras clave:

cartílago, cultivo celular, cultivo de tejido, hidrogel, obtención de tejido, osteoartritis, riesgo de sesgo, tejidos musculoesqueléticos

Resumen

Antecedentes: El uso de diferentes especies animales para el cultivo de condrocitos se ha empleado para investigar las enfermedades que afectan al cartílago, incluida la osteoartritis. El cartílago bovino y los condrocitos se pueden utilizar para establecer cultivos celulares tridimensionales, que ofrecen un modelo in vitro más fiable en comparación con los cultivos monocapa convencionales. Sin embargo, los condrocitos bovinos en cultivos tridimensionales no se han implementado ampliamente, perdiendo una fuente potencial de tejido proveniente de mamíferos, que podrían ser útiles para estudios preclínicos sobre la osteoartritis. Objetivo: El objetivo del presente artículo fue realizar una revisión exhaustiva de la literatura científica existente que emplea cultivos tridimensionales de cartílago bovino para investigar la osteoartritis. Métodos: Se realizó una búsqueda sistemática utilizando las bases de datos electrónicas PubMed y Scopus, para identificar estudios clínicos utilizando cultivo celular 3D para la artrosis. Los términos de búsqueda incluyeron: ´3D culture’, ‘3D cell culture’, ‘bovine cartilage’ y ‘chondrocyte’. Se recolectaron un total de 59 artículos y, tras la selección, se incluyeron 12 artículos en el análisis final. La evaluación del riesgo de sesgo se llevó a cabo categorizando cada uno de los estudios como riesgo de sesgo "bajo", "medio" o "alto". Resultados: Se encontró que en los artículos incluidos en esta revisión existía una alta variabilidad en los sitios de aislamiento que incluyen las articulaciones del carpo, del metacarpo y de la rodilla, así como una alta variación en los métodos de cultivo, utilizando pasajes celulares que van desde el pasaje cero hasta el pasaje nueve. Además, se detectó un riesgo medio y alto de sesgo en todos los artículos, probablemente debido a las dificultades en la aleatorización y el cegamiento de los estudios. En resumen, esta revisión examina críticamente el cultivo celular tridimensional para la investigación de trastornos del cartílago, con un énfasis particular en el cartílago bovino. Conclusiones: Los estudios futuros deben incluir métodos consistentes a lo largo de la fase in vitro del estudio, incluyendo uniformidad de los sitios de colección de muestras, así como el uso de pasajes tempranos de condrocitos para preservar el fenotipo celular. Además, la comparación de modelos traslacionales relevantes debe incluir condiciones ajustadas a la edad para evitar factores de confusión adicionales.

|Resumen
= 91 veces | PDF (ENGLISH)
= 25 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Mariana Ramírez-Jaramillo, Universidad CES

Biomedical Engineering, Universidad CES, Calle 10A # 22-04 | Medellín, Colombia

Maria P Currea-Gómez, Universidad CES

Biomedical Engineering, Universidad CES, Calle 10A # 22-04 | Medellín, Colombia

Sebastián Cardona-Ramírez, Universidad de Antioquia

Grupo de Investigación OHVRI, Escuela de Medicina Veterinaria, Facultad de Ciencias Agrarias, Universidad de Antioquia, Medellín, Colombia

Citas

Ahmed N, Iu J, Brown CE, Taylor DW, Kandel RA. Serum- and growth-factor-free three-dimensional culture system supports cartilage tissue formation by promoting collagen synthesis via Sox9–Col2a1 interaction. Tissue Eng Part A 2014; 20:2224–2233. https://doi.org/10.1089/ten.tea.2013.0559

Antunes BP, Vainieri ML, Alini M, Monsonego-Ornan E, Grad S, Yayon A. Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in fibrin-hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater 2020; 105:170–179. https://doi.org/10.1016/j.actbio.2020.01.032

Bascuñán AL, Biedrzycki A, Banks SA, Lewis DD, Kim SE. Large animal models for anterior cruciate ligament research. Front Vet Sci 2019; 6:2922019. https://doi.org/10.3389/fvets.2019.00292

Brodkin KR, Garcı́a AJ, Levenston ME. Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials 2004; 25:5929–5938. https://doi.org/10.1016/j.biomaterials.2004.01.044

Camacho D, Mardones R. Cartilage restoration and use of orthobiologics. Tech Orthop 2021; 36:247. 10.1097/BTO.0000000000000511

Cardona-Ramirez S, Cook JL, Stoker AM, Ma R. Small laboratory animal models of anterior cruciate ligament reconstruction. J Orthop Res 2022; 40:1967–1980. https://doi.org/10.1002/jor.25395

Çelik E, Bayram C, Akçapınar R, Türk M, Denkbaş EB. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Mater Sci Eng C Mater Biol Appl 2016; 66:221–229. https://doi.org/10.1016/j.msec.2016.04.084

Faggion CM. Guidelines for reporting pre-clinical in vitro studies on dental materials. J Evid Based Dent Pract 2012; 12:182–189. https://doi.org/10.1016/j.jebdp.2012.10.001

Farnsworth NL, Mead BE, Antunez LR, Palmer AE, Bryant SJ. Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel. Matrix Biol 2014; 40:17–26. https://doi.org/10.1016/j.matbio.2014.08.002

Fiederlein A, Evans JF. Modeling osteoarthritis using three-dimensional culture. Am J Biomed Res 2020; 8:72–74. 10.12691/ajbr-8-3-3

Gawri R, Bielecki R, Salter EW, Zelinka A, Shiba T, Collingridge G, Nagy A, Kandel RA. The anabolic effect of inorganic polyphosphate on chondrocytes is mediated by calcium signalling. J Orthop Res 2022; 40:310–322. https://doi.org/10.1002/jor.25032

Grames EM, Stillman AN, Tingley MW, Elphick CS. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol Evol 2019; 10:1645–1654. https://doi.org/10.1111/2041-210X.13268

Hamilton DW, Riehle MO, Monaghan W, Curtis ASG. Articular chondrocyte passage number: Influence on adhesion, migration, cytoskeletal organisation and phenotype in response to nano- and micro-metric topography. Cell Biol Int 2005; 29:408–421.https://doi.org/10.1016/j.cellbi.2004.12.008

Heywood HK, Thorpe SD, Jeropoulos RM, Caton PW, Lee DA. Modulation of sirtuins during monolayer chondrocyte culture influences cartilage regeneration upon transfer to a 3D culture environment. Front Bioeng Biotechnol 2022; 10: 971932. https://doi.org/10.3389/fbioe.2022.971932.

Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, Lowder E, Landis WJ. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 2006; 12(4):691–703. https://doi.org/10.1089/ten.2006.12.691

Kang S-W, Yoo SP, Kim B-S. Effect of chondrocyte passage number on histological aspects of tissue-engineered cartilage. Biomed Mater Eng 2007; 17:269–276. https://content.iospress.com/articles/bio-medical-materials-and-engineering/bme473

Krithikadatta J, Gopikrishna V, Datta M. CRIS Guidelines (checklist for reporting in-vitro studies): A concept note on the need for standardized guidelines for improving quality and transparency in reporting: in-vitro: studies in experimental dental research. J Conserv Dent 2014; 17:301-304. https://doi.org/10.4103/0972-0707.136338

Lee H, Gu L, Mooney DJ, Levenston ME, Chaudhuri O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat Mater 2017; 16:1243–1251.https://doi.org/10.1038/nmat4993

Lee K, Chen Y, Li X, Wang Y, Kawazoe N, Yang Y, Chen G. Solution viscosity regulates chondrocyte proliferation and phenotype during 3D culture. J Mater Chem B 2019; 7:7713–7722. https://doi.org/10.1039/c9tb02204j

Li X, Chen S, Li J, Wang X, Zhang J, Kawazoe N, Chen G. 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers 2016; 8:269. https://doi.org/10.3390/polym8080269

Li Z, Xiang S, Li EN, Fritch MR, Alexander PG, Lin H, Tuan RS. Tissue engineering for musculoskeletal regeneration and disease modeling. In: Schäfer-Korting M, Stuchi Maria-Engler S, Landsiedel R (eds) Organotypic models in drug development. cham: Springer International Publishing 2021;235–268. https://doi.org/10.1007/164_2020_377.

Liguori GR, Jeronimus BF, de Aquinas Liguori TT, Moreira LFP, Harmsen MC. Ethical issues in the use of animal models for tissue engineering: reflections on legal aspects, moral theory, three Rs strategies, and harm–benefit analysis Tissue Eng Part C Methods 2017; 23:850–862. https://doi.org/10.1089/ten.tec.2017.0189

Maličev E, Barlič A, Kregar-Velikonja N, Stražar K, Drobnič M. Cartilage from the edge of a debrided articular defect is inferior to that from a standard donor site when used for autologous chondrocyte cultivation. J Bone Joint Surg Br 2011; 93-B:421–426. https://doi.org/10.1302/0301-620x.93b3.25675

Mancuso L, Liuzzo MI, Fadda S, Pisu M, Cincotti A, Arras M, La Nasa G, Concas A, Cao G. In vitro ovine articular chondrocyte proliferation: experiments and modelling. Cell Prolif 2010; 43:310–320. https://doi.org/10.1111/j.1365-2184.2010.00676.x

Mellor LF, Baker TL, Brown RJ, Catlin LW, Oxford JT. Optimal 3D culture of primary articular chondrocytes for use in the rotating wall vessel bioreactor. Aviat Space Environ Med 2014; 85:798–804. https://doi.org/10.3357/asem.3905.2014

Meng X, Ziadlou R, Grad S, Alini M, Wen C, Lai Y, Qin L, Zhao Y, Wang X. Animal models of osteochondral defect for testing biomaterials. Biochem Res Int 2020; 2020:e9659412. https://doi.org/10.1155/2020/9659412

Müller S, Lindemann S, Gigout A. Effects of Sprifermin, IGF1, IGF2, BMP7, or CNP on bovine chondrocytes in monolayer and 3D culture. J Orthop Res 2020; 38:653–662. https://doi.org/10.1002/jor.24491

Nam BM, Kim BY, Jo YH, Lee S, Nemeno JG, Yang W, Lee KM, Kim H, Jang IJ, Takebe T, Lee JI. Effect of cryopreservation and cell passage number on cell preparations destined for autologous chondrocyte transplantation. Transplant Proc 2014; 46:1145–1149. https://doi.org/10.1016/j.transproceed.2013.11.117

Oh J, Son YS, Kim WH, Kwon O-K, Kang B-J. Mesenchymal stem cells genetically engineered to express platelet-derived growth factor and heme oxygenase-1 ameliorate osteoarthritis in a canine model. J Orthop Surg Res 2021; 16:43. https://doi.org/10.1186/s13018-020-02178-4

Oswald ES, Ahmed HS, Kramer SP, Bulinski JC, Ateshian GA, Hung CT. Effects of hypertonic (NaCl) two-dimensional and three-dimensional culture conditions on the properties of cartilage tissue engineered from an expanded mature bovine chondrocyte source. Tissue Eng Part C Methods 2011; 17(11): 1041-1049. https://doi.org/10.1089/ten.tec.2011.0212

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71

Pizzolatti ALA, Gaudig F, Seitz D, Roesler CRM, Salmoria GV. Glucosamine hydrochloride and N-acetylglucosamine influence the response of bovine chondrocytes to TGF-β3 and IGF in monolayer and three-dimensional tissue culture. Tissue Eng Regen Med 2018; 15:781–791. https://doi.org/10.1007/s13770-018-0150-x

Sheth VH, Shah NP, Jain R, Bhanushali N, Bhatnagar V. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: The QUIN. J Prosthet Dent 2022; 1–5. https://doi.org/10.1016/j.prosdent.2022.05.019

Solanki K, Shanmugasundaram S, Shetty N, Kim S-J. Articular cartilage repair & joint preservation: A review of the current status of biological approach. J Clin Orthop Trauma 2021; 22:101602. https://doi.org/10.1016/j.jcot.2021.101602

Son M-S, Levenston ME. Quantitative tracking of passage and 3D culture effects on chondrocyte and fibrochondrocyte gene expression. J Tissue Eng Regen Med 2017;1 1:1185–1194. https://doi.org/10.1002/term.2022

Soontararak S, Ardaum P, Senarat N, Yangtara S, Lekcharoensuk C, Putchong I, Kashemsant N, Vijarnsorn M, Chow L, Dow S, Lekcharoensuk P. In vitro anti-inflammatory and regenerative effects of autologous conditioned serum from dogs with osteoarthritis. Animals (Basel) 2022; 12:2717. https://doi.org/10.3390/ani12192717

Swatland HJ. Meat products and consumption culture in the West. Meat Sci 2010; 86:80–85. https://doi.org/10.1016/j.meatsci.2010.04.024

World Health Organization (WHO). Musculoskeletal health. 2022. https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions

Wu MJM, Sermer C, Kandel RA, Theodoropoulos JS. Characterization of migratory cells from bioengineered bovine cartilage in a 3D co-culture model. Am J Sports Med, 2022; 50(11), 3090-3101. https://doi.org/10.1177/03635465221113325

Zheng J, Chen H, Lu C, Yoshitomi T, Kawazoe N, Yang Y, Chen G. 3D culture of bovine articular chondrocytes in viscous medium encapsulated in agarose hydrogels for investigation of viscosity influence on cell functions. J Mater Chem B 2023. 11(31), 7424-7434.https://doi.org/10.1039/d3tb01174g

Descargas

Publicado

2024-12-09

Cómo citar

Ramírez-Jaramillo, M., Currea-Gómez, M. P., & Cardona-Ramírez, S. (2024). Exploring bovine three-dimensional chondrocyte culture models in osteoarthritis research: A systematic review. Revista Colombiana De Ciencias Pecuarias. https://doi.org/10.17533/udea.rccp.357017

Número

Sección

Accepted manuscripts