Uso de fluidos orais para monitoramento eficiente do vírus Influenza em rebanhos suínos na Colômbia
DOI:
https://doi.org/10.17533/udea.rccp.v35n3a02Palavras-chave:
amostragem, detecção de doenças, fluidos orais, Fazenda de porcos, infecção, molecular, suíno, RT-PCR, técnica de diagnóstico, vigilância, vírus influenza AResumo
Antecedentes: A vigilância do vírus Influenza A (IAV) em suínos é crítica devido ao impacto direto da doença na indústria de suínos, mas também porque os IAV são propensos a transmissão interespécies (de humanos para porcos e vice-versa) e, portanto, seu monitoramento é crítico do ponto de vista da saúde pública e animal. Atualmente, existem várias técnicas de diagnóstico disponíveis para detectar a infecção por IAV em amostras nasais de suínos, no entanto, outras amostras, como fluidos orais (OF), têm sido implementadas como novas alternativas para a detecção de patógenos. O OF permite uma detecção eficiente e viável de doenças com menor custo em nível de rebanho, com menor risco de estresse para os animais. Objetivo: Descrever uma estratégia de vigilância de IAV em nível de rebanho durante surtos de doenças respiratórias em granjas de suínos em ambientes tropicais por meio de fluidos orais suínos. Métodos: A estratégia de vigilância ativa foi conduzida em cinco granjas de suínos selecionadas com histórico de doenças respiratórias. Suínos OF foram coletados para teste de IAV. Uma amostra OF foi descrita como um espécime baseado em curral coletado de um grupo de >20 porcos por curral e/ou por celeiro (se eles foram alojados individualmente, mas tendo contato próximo entre eles). A infecção IAV foi investigada testando OF por rRT-PCR e confirmada por isolamento em cultura de células. Resultados: A detecção do IAV foi realizada em cinco fazendas selecionadas propositalmente entre 2014-2017. Nós investigamos um total de 18 eventos de surto de doença respiratória. Do total de 1.444 amostras de OF testadas, encontramos 107 (7,4%) positivas para IAV por rRT-PCR. Além disso, apenas 9 isolados de IAV foram obtidos, e todos foram posteriormente identificados como subtipo H1. Conclusão: Os resultados de nosso estudo demonstraram como o OF pode ser facilmente implementado como um método de amostragem novo, amigável, amigável com o bem-estar, preciso e de baixo custo para vigilância ativa e monitoramento de infecções IAV em fazendas de suínos em ambientes tropicais.
Downloads
Referências
Adeola O, Adeniji J, Olugasa B. Detection of haemagglutination-inhibiting antibodies against human H1 and H3 strains of Influenza A viruses in pigs in Ibadan, Nigeria. Zoonoses Public Health 2010; 57(7-8): e89–e94. DOI: https://doi.org/10.1111/j.1863-2378.2009.01268.x
Anderson TK, Chang J, Arendsee ZW, Venkatesh D, Souza CK, Kimble JB, Lewis NS, Davis CT, Vincent AL. Swine Influenza A viruses and the tangled relationship with humans. Cold Spring Harb Perspect Med 2021; 11(3): a038737. DOI: https://doi.org/10.1101/cshperspect.a038737
Arnold M, Mueller-Doblies D, Carrique-Mas J, Davies R. The estimation of pooled-sample sensitivity for detection of Salmonella in turkey flocks. J Appl Microbiol 2009; 107(3): 936–943. DOI: https://doi.org/10.1111/j.1365-2672.2009.04273.x
Atkinson B, Bearson B, Loving C, Zimmerman J, Kich J, Bearson S. Detection of Salmonella-specific antibody in swine oral fluids. Porc Heal Manag 2019; 5(29): 1–5. DOI: https://doi.org/10.1186/s40813-019-0136-7
Barrera-Zarate J, Andrade M, Pereira C, Vasconcellos A, Wagatsuma M, Sato J, Daniel A, Rezende LA, Otoni L, Laub R, Macedo N, Costa C, Haddad J, Guedes R. Oral fluid for detection of exposure to Lawsonia intracellularis in naturally infected pigs. Vet J 2019; 244: 34–36. DOI: https://doi.org/10.1016/j.tvjl.2018.12.003
Brown E. Influenza virus genetics. Biomed Pharmacother 2000; 54(4): 196–209. DOI: https://doi.org/10.1016/S0753-3322(00)89026-5
Buehler J, Lager K, Vincent A, Miller C, Thacker E, Janke B. Issues encountered in development of enzyme-linked immunosorbent assay for use in detecting Influenza A virus subtype H5N1 exposure in swine. J Vet Diagnostic Investig 2014; 26(2): 277–281. DOI: https://doi.org/10.1177/1040638713518775
Cameron A, Gardner I, Doherr M, Wagner B. Sampling considerations in surveys and monitoring and surveillance systems: methods and applications. In: Salman M, editor. Animal disease surveillance and survey systems. Iowa: Iowa State Press; 2008. p. 47–66. DOI: https://doi.org/10.1002/9780470344866.ch4
Cornelison A, Karriker L, Williams N, Haberl B, Stalder K, Schulz L, Patience J. Impact of health challenges on pig growth performance, carcass characteristics, and net returns under commercial conditions. Transl Anim Sci 2018; 2(1): 50–61. DOI: https://doi.org/10.1093/tas/txx005
Cortey M, Napp S, Alba A, Pileri E, Grau-Roma L, Sibila M, Segalés J. Theoretical and experimental approaches to estimate the usefulness of pooled serum samples for the diagnosis of postweaning multisystemic wasting syndrome. J Vet Diagnostic Investig 2011; 23(2): 233–240. DOI: https://doi.org/10.1177/104063871102300206
Corzo C, Culhane M, Juleen K, Stigger-Rosser E, Ducatez M, Webby R, Lowe J. Active surveillance for influenza a virus among swine, midwestern United States, 2009-2011. Emerg Infect Dis 2013; 19(6): 954–960. DOI: https://doi.org/10.3201/eid1906.121637
Decorte I, Steensels M, Lambrecht B, Cay A, De Regge N. Detection and isolation of swine influenza A virus in spiked oral fluid and samples from individually housed, experimentally infected pigs: potential role of porcine oral fluid in active influenza A virus surveillance in swine. PLoS One 2015; 10(10): e0139586. DOI: https://doi.org/10.1371/journal.pone.0139586
Fablet C, Rose N, Bernard C, Messager I, Piel Y, Grasland B. Estimation of the diagnostic performance of two ELISAs to detect PCV2 antibodies in pig sera using a Bayesian method. J Virol Methods 2017; 249: 121–125. DOI: https://doi.org/10.1016/j.jviromet.2017.09.002
Forgie S, Keenliside J, Wilkinson C, Webby R, Lu P, Sorensen O, Fonseca K, Barman S, Rubrum A, Stigger E, Marrie T, Marshall F, Spady D, Hu J, Loeb M, Russell M, Babiuk L. Swine outbreak of pandemic influenza A virus on a canadian research farm supports human-to-swine transmission. Clin Infect Dis 2011; 52(1):10–18. https://doi.org/10.1093/cid/ciq030
Gerber P, Dawson L, Strugnell B, Burgess R, Brown H, Opriessnig T. Using oral fluids samples for indirect influenza A virus surveillance in farmed UK pigs. Vet Med Sci 2017; 3(1):3–12. DOI: https://doi.org/10.1002/vms3.51
Grøntvedt C, Er C, Gjerset B, Germundsson A, Framstad T, Brun E, Jørgensen A, Lium B. Clinical impact of infection with pandemic influenza (H1N1) 2009 virus in naïve nucleus and multiplier pig herds in Norway. Influenza Res Treat 2011; 2011:1–6. DOI: https://doi.org/10.1155/2011/163745
Hartshorn K, Ligtenberg A, White M, Eijk M, Hartshorn M, Pemberton L, Holmskov U, Crouch E. Salivary agglutinin and lung scavenger receptor cysteine-rich glycoprotein 340 have broad anti-influenza activities and interactions with surfactant protein D that vary according to donor source and sialylation. Biochem J 2006; 393(2):545–553. DOI: https://doi.org/10.1042/BJ20050695
Henao-Díaz A, Giménez-Lirola L, Baum D, Zimmerman J. Guidelines for oral fluid-based surveillance of viral pathogens in swine. Porc Heal Manag 2020; 6(28):1-12. DOI: https://doi.org/10.1186/s40813-020-00168-w
Hernández-García J, Robben N, Magnée D, Eley T, Dennis I, Kayes S, Thomson J, Tucker A. The use of oral fluids to monitor key pathogens in porcine respiratory disease complex. Porc Heal Manag 2017; 3(7):1-13. DOI: https://doi.org/10.1186/s40813-017-0055-4
Janke B. Clinicopathological features of swine influenza. Curr Top Microbiol Immunol 2013; 370: 69–83. DOI: https://doi.org/10.1007/82_2013_308
Janke B. Diagnosis of viral respiratory disease in swine. Swine Heal Prod 1995; 3:116–120. Available in: https://www.aasv.org/shap/issues/v3n3/v3n3p116.pdf
Killian M. Hemagglutination assay for influenza virus. In: Spackman E, editor. Animal influenza virus. Methods in molecular biology (methods and protocols). New York: Humana Press; 2014. p. 3–9. DOI: https://doi.org/10.1007/978-1-4939-0758-8_1
Ma W, Lager K, Vincent A, Janke B, Gramer M, Richt J. The role of swine in the generation of novel influenza viruses. Zoonoses Public Health 2009; 56(6-7): 326–337. DOI: https://doi.org/10.1111/j.1863-2378.2008.01217.x
Muñoz-Zanzi C, Thurmond M, Hietala S, Johnson W. Factors affecting sensitivity and specificity of pooled-sample testing for diagnosis of low prevalence infections. Prev Vet Med 2006; 74(4): 309–322. DOI: https://doi.org/10.1016/j.prevetmed.2005.12.006
Murato Y, Hayama Y, Shimizu Y, Sawai K, Yamamoto T. Evaluation of sampling methods for effective detection of infected pig farms during a disease outbreak. PLoS ONE 2020; 15(10): e0241177. DOI: https://doi.org/10.1371/journal.pone.0241177
Myers K, Olsen C, Gray G. Cases of swine influenza in humans: A review of the literature. Clin Infect Dis 2007; 44(8): 1084–1088. DOI: https://doi.org/10.1086/512813
Olsen C, Brammer L, Easterday B, Arden N, Belay E, Baker I, Cox N. Serologic evidence of H1 swine influenza virus infection in swine farm residents and employees. Emerg Infect Dis 2002; 8(8):814–819. DOI: https://doi.org/10.3201/eid0808.010474
Olsen C, Carey S, Hinshaw L, Karasin A. Virologic and serologic surveillance for human, swine and avian influenza virus infections among pigs in the north-central United States. Arch Virol 2000; 145:1399–1419. DOI: https://doi.org/10.1007/s007050070098
Olsen, C.W., Karasin, A.I., Carman, S., Li, Y., Bastien, N., Ojkic, D., Alves, D., Charbonneau, G., Henning B, Low D, Burton L, Broukhanski G. Triple Reassortant H3N2 Influenza A , Canada, 2005. Emerg Infect Dis 2006; 12(7):1132–1135. DOI: https://doi.org/10.3201/eid1207.060268
Panyasing Y, Goodell C, Kittawornrat A, Wang C, Levis I, Desfresne L, Rauh R, Gauger P, Zhang J, Lin X, Azeem S, Ghorbani-Nezami S, Yoon K, Zimmerman J. Influenza A virus surveillance based on pre-weaning piglet oral fluid samples. Transbound Emerg Dis 2016; 63(5): e328–e338. DOI: https://doi.org/10.1111/tbed.12307
Ramírez A, Wang C, Prickett J, Pogranichniy R, Yoon K, Main R, Johnson J, Rademacher C, Hoogland M, Hoffmann P, Kurtz A, Kurtz E, Zimmerman J. Efficient surveillance of pig populations using oral fluids. Prev Vet Med 2012; 104(3-4): 292–300. DOI: https://doi.org/10.1016/j.prevetmed.2011.11.008
Romagosa A, Gramer M, Joo H, Torremorell M. Sensitivity of oral fluids for detecting influenza A virus in populations of vaccinated and non-vaccinated pigs. Influenza Other Respi Viruses 2012; 6(2):110-118. DOI: https://doi.org/10.1111/j.1750-2659.2011.00276.x
Rotolo M, Sun Y, Wang C, Giménez-Lirola L, Baum D, Gauger P, Harmon K, Hoogland M, Main R, Zimmerman J. Sampling guidelines for oral fluid-based surveys of group-housed animals. Vet Microbiol 2017; 209: 20–29. DOI: https://doi.org/10.1016/j.vetmic.2017.02.004
Rotolo ML, Main RG, Zimmerman JJ. Herd-level infectious disease surveillance of livestock populations using aggregate samples. Anim Health Res Rev 2018; 19(1):53–64. DOI: https://doi.org/10.1017/S1466252318000038
Rovira A, Cano J, Muñoz-Zanzi C. Feasibility of pooled-sample testing for the detection of porcine reproductive and respiratory syndrome virus antibodies on serum samples by ELISA. Vet Microbiol 2008; 130(1-2): 60–68. DOI: https://doi.org/10.1016/j.vetmic.2007.12.016
Sandbulte M, Spickler A, Zaabel P, Roth J. Optimal use of vaccines for control of Influenza A virus in swine. Vaccines 2015; 3(1): 22–73. DOI: https://doi.org/10.3390/vaccines3010022
Sergeant E. Epitools epidemiological calculators. 2014. URL: https://epitools.ausvet.com.au/
Stordeur P, Poulin L, Craciun L, Zhou L, Schandené L, De Lavareille A, Goriely S, Goldman M. Cytokine mRNA quantification by real-time PCR. J Immunol Methods 2002; 259(1-2): 55–64. DOI: https://doi.org/10.1016/S0022-1759(01)00489-6
RStudio Team. RStudio: Integrated Development for R. RStudio, Inc. 2016. URL: http://www.rstudio.com/
Trang N, Hirai T, Yamamoto T, Matsuda M, Okumura N, Giang N, Lan N, Yamaguchi R. Detection of porcine reproductive and respiratory syndrome virus in oral fluid from naturally infected pigs in a breeding herd. J Vet Sci 2014; 15(3): 361–367. DOI: https://doi.org/10.4142/jvs.2014.15.3.361
Van den Hoecke S, Verhelst J, Vuylsteke M, Saelens X. Analysis of the genetic diversity of influenza A viruses using next-generation DNA sequencing. BMC Genomics 2015; 16:79. DOI: https://doi.org/10.1186/s12864-015-1284-z
Vincent A, Perez D, Rajao D, Anderson T, Abente E, Walia R, Lewis N. Influenza A virus vaccines for swine. Vet Microbiol 2017; 206:35–44. DOI: https://doi.org/10.1016/j.vetmic.2016.11.026
White M, Helmerhorst E, Ligtenberg A, Karpel M, Tecle T, Siqueira W, Oppenheim F, Hartshorn K. Multiple components contribute to ability of saliva to inhibit influenza viruses. Oral Microbiol Immunol 2009; 24(1):18–24. DOI: https://doi.org/10.1111/j.1399-302X.2008.00468.x
WHO-World Health Organization. WHO information for molecular diagnosis of influenza virus in humans - update. 2011; [access date: Jan 2012] URL: https://www.who.int/influenza/gisrs_laboratory/molecular_diagnosis/en/
Xu M, Huang Y, Chen J, Huang Z, Zhang J, Zhu Y, Xie S, Chen Q, Wei W, Yang D, Huang X, Xuan H, Xiang H. Isolation and genetic analysis of a novel triple-reassortant H1N1 influenza virus from a pig in China. Vet Microbiol 2011; 147(3-4): 403–409. DOI: https://doi.org/10.1016/j.vetmic.2010.07.012
Yassine H, Khatri M, Zhang Y, Lee C, Byrum B, O’Quin J, Smith K, Saif Y. Characterization of triple reassortant H1N1 influenza A viruses from swine in Ohio. Vet Microbiol 2009; 139(1-2):132–139. DOI: https://doi.org/10.1016/j.vetmic.2009.04.028
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam a RCCP a reimprimir o material nela publicado.
A revista permite que o(s) autor(es) detenham os direitos autorais sem restrições, e permitirá que o(s) autor(es) mantenham os direitos de publicação sem restrições.