Parâmetros de estresse oxidativo em cães naturalmente infectados com sarna sarcóptica
DOI:
https://doi.org/10.17533/udea.rccp.v36n4a2Palavras-chave:
biomarcador, estresse oxidativo, infestação, cachorro, Sarcoptes, sarna sarcóptica, sarna, zoonoseResumo
Antecedentes: A sarna é uma das doenças mais comuns em cães, e também ameaça a saúde humana e animal devido ao seu caráter zoonótico. Objetivo: O objetivo da pesquisa foi estudar o equilíbrio oxidante/antioxidante com achados hematológicos em cães infestados com sarna sarcóptica. Métodos: Os cães do grupo Sarcoptes apresentavam sinais de infestação como prurido intenso, escoriações, alopecia e bolhas no cotovelo e margens auriculares. O material deste estudo consistiu em 32 cães sem raça definida, entre 1 e 2 anos de idade. Os cães foram divididos em dois grupos que foram grupo controle (animais livres de infestação, n=10), bem como o grupo sarna sarcóptica (Sarcoptes; n=22). Resultados: Os resultados do estudo demonstraram que houve aumentos significativos (p<0,01) no total oxidant status (TOS), malondialdeído (MDA), oxidative stress index (OSI) e nos níveis de óxido nítrico (NO), enquanto glutationa (GSH) e os níveis de status antioxidante total (TAS) dos cães infestados por Sarcoptes diminuíram significativamente (p<0,01). Além disso, foi encontrado um aumento significativo (p<0,01) da contagem de leucócitos dos cães do grupo Sarcoptes em comparação com o controle. Por outro lado, houve reduções significativas (p <0,01) nas contagens de RBC, HGB e PCV em cães infestados por Sarcoptes. Conclusões: Pode-se sugerir uma possível associação entre desequilíbrio oxidante/antioxidante e achados hematológicos nos cães infestados por sarna sarcóptica. Além disso, além dos marcadores MDA, TAS, TOS e OSI, NO e GSH também podem ser usados para descobrir o estresse oxidativo em cães naturalmente infectados por Sarcoptes scabiei.
Downloads
Referências
Aatish HU, Zia-Ud-Din S, Iqbal Z, Jabbar A, Tasawar Z. Prevalence of sheep mange in district Dera Ghazi Khan (Pakistan) and associated hematological/biochemical disturbances. IJAB 2007; 9(6):917-920.
Allaam MA, Allam TS, Elkhatam AO. Biochemical and circulating oxidative stress biomarkers in Egyptian buffaloes (Bubalus bubalis) infested by sarcoptic mange. Glob Vet 2014; 13(4):656-661.
Beigh SA, Soodan JS, Bhat AM. Sarcoptic mange in dogs: Its effect on liver, oxidative stress, trace minerals and vitamins. Vet Parasitol 2016; 227:30-34. https://doi.org/10.1016/j.vetpar.2016.07.013
Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006; 126(12):2565-2575. https://doi.org/10.1038/sj.jid.5700340
Cam Y, Atasever A, Erslan G, Kibar M, Atalay O, Beyaz L, Incı A, Lıman BC. Eimeria steidae: experimental infection in rabbits and the effect of treatment with toltrazuril and ivermectin. Exp Parasitol 2008; 119(1):164-172. https://doi.org/10.1016/j.exppara.2008.01.005
Camkerten I, Sahin T, Borazan G, Gokcen A, Das A. Evaluation of blood oxidant/antioxidant balance in dogs with sarcoptic mange. Vet Parasitol 2009; 161(1-2):106–109. https://doi.org/10.1016/j.vetpar.2008.12.019
Cemek M, Enginar H, Karaca T, Unak P. In vivo radio-protective effects of Nigella satival oil and reduced glutathi-one against irradiation-induced oxidative injury and number of peripheral blood lymphocytes in rats. Photochem Photobiol 2006; 82(6):1691–1696. https://doi.org/10.1111/j.1751-1097.2006.tb09832.x
Chandramathi S, Kumar S, Sinnadurai S, Kuppusamy UR. Stress exacerbates infectivity and pathogenicity of blastocystis hominis. In vitro and in vivo evidence. Plos One 2014; 9(5):e94567. https://doi.org/10.1371/journal.pone.0094567
De UK, Dey S. Evaluation of organ function and oxidant/antioxidant status in goats with sarcoptic mange. Trop Anim Health Prod 2010; 42(8):1663-1668. https://doi.org/10.1007/s11250-010-9618-y
Dimri U, Sharma MC, Swarup D, Ranjan R, Kataria M. Alterations in hepatic lipid peroxides and antioxidant profile in Indian water buffaloes suffering from sarcoptic mange. Res Vet Sci 2008; 85(1):101-105. https://doi.org/10.1016/j.rvsc.2007.07.006
Dimri U, Bandyopadhyay S, Singh SK, Ranjan R, Mukherjee R, Yatoo MI, Patra PH, De UK, Dar AA. Assay of alterations in oxidative stress markers in pigs naturally infested with Sarcoptes scabiei var. suis. Vet Parasitol 2014; 205(1-2):295-299. https://doi.org/10.1016/j.vetpar.2014.06.015
Ercan N, Fidancı UR. Urine 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels of dogs in pyoderma. Vet J Ankara Univ 2012; 59:163–168.
Erel O: A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005; 38(12):1103-1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
Erel O: A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004; 37(2):112-119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
Espinosa J, Perez MJ, Jorge RL, R´Aezbravo A, Francisco JC, Paulino F, Soriguer CR, Enrique JG, Romero D. Evaluation of oxidant/antioxidant balance in Iberian ibex (Capra pyrenaica) experimentally infested with Sarcoptes scabiei Vet Parasitol 2017; 242:63-70. https://doi.org/10.1016/j.vetpar.2017.05.027
Hampel V, Knaus M, Schäfer J, Beugnet F, Rehbein S. Treatment of canine sarcoptic mange with afoxolaner (NexGard) and afoxolaner plus milbemycin oxime (NexGard Spectra) chewable tablets: efficacy under field conditions in Portugal and Germany. Parasite 2018; 25:63. https://doi.org/10.1051/parasite/2018064
Kaya S, Suutcu R, Cetin ES, Aridogan BC, Delibas N, Demirci M. Lipid peroxidation level and antioxidant enzyme activities in the blood of patients with acute and chronic fascioliasis. Int J Infect Dis 2007; 11(3):251-255. https://doi.org/10.1016/j.ijid.2006.05.003
Kemp DJ, Walton SF, Harumal P, Currie BJ. The scourge of scabies. Biologist 2002; 49(1):19-24.
Kleczkowski M, Kluciński W, Sikora J, Zdanowicz M, Dziekan P: Role of the antioxidants in the protection against oxidative stress in cattle--nonenzymatic mechanisms (Part 2). Pol J Vet Sci 2004; 7(3):233–240.
Knight JA: Review: free radicals, antioxidants, and the immune system. Ann Clin Lab Sci 2000; 30(2):145–158.
Kocyigit A, Keles H, Selek S, Guzel S, Celık H, Erel O: Increased DNA damage and oxidative stress in patients with cutaneous leishmaniasis. Mutat Res 2005; 585(1-2):71–78. https://doi.org/10.1016/j.mrgentox.2005.04.012
Ljunggren EL. Molecular analysis of Sarcoptes scabiei. Thesis, Swedish University of Agricultural Sciences, 47, 2005.
Mark R, Johannes B, Maria KS, Andrea T, Klaus R. Oxidative stress in aging human skin. Biomolecules 2015; 5(2):545-589. https://doi.org/10.3390/biom5020545
Mcclain D, Dana AN, Goldenberg G. Mite infestations. Dermatol Ther 2009; 22(4):327-346. https://doi.org/10.1111/j.1529-8019.2009.01245.x
Parmar AJ, Sıngh V, Chaudhary SS, Prajapati BH, Sengar YS. Hematobiochemical studies on sarcoptic mange in camel (Camelus dromedarius) in Banaskantha district (North Gujarat). J Parasitic Dis 2005; 29(1):71-73.
Paterson TE, Halliwell RE, Fields PJ, Louw ML, Ball G, Louw J, Pinckney R. Canine generalized demodicosis treated with varying doses of a 2.5% moxidectin+ 10% imidacloprid spot-on and oral ivermectin: Parasiticidal effects and long-term treatment outcomes. Vet Parasitol 2014; 205(3-4):687-696. https://doi.org/10.1016/j.vetpar.2014.08.021
Pérez JM, Serrano E, Sorıguer RC, González FJ, Sarasa M, Granados JE, Cuenca R, Fandos P. Distinguishing disease effects from environmental effects in a mountain ungulate: seasonal variation in body weight, hematology, and serum chemistry among Iberian ibex (Capra pyrenaica) affected by sarcoptic mange. J Wildl Dis 2015; 51(1):148–156. https://doi.org/10.7589/2014-01-008
Lalli PN, Morgan MS, Arlian LG. Skewed Th1/Th2 immune response to Sarcoptes scabiei. J Parasitol 2004; 90(4):711-714. https://doi.org/10.1645/GE-214R
Placer ZA, Cushman L, Johnson BC. Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Anal Biochem 1966; 16(2):359-364. https://doi.org/10.1016/0003-2697(66)90167-9
Sedlak J, Lındsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem 1968; 25(1):192-205. https://doi.org/10.1016/0003-2697(68)90092-4
Serarslan G, Yılmaz HR, Sogut S. Serum antioxidant activities, malondial dehyde and nitric oxide levels in human cutaneous leishmaniasis. Clin Exp Dermatol 2005; 30(3):267–271. https://doi.org/10.1111/j.1365-2230.2005.01758.x
Shalaby MF, El-Din AN, El-Hamd MA. Isolation, identification, and in vitro antifungal susceptibility testing of dermatophytes from clinical samples at Sohag University Hospital in Egypt. electron. Physician 2016; 8(6):2557-2567. https://doi.org/10.19082/2557
Stevanović O, Vujanić D, Dobrijević M, Trbojević I, Sladojević Ž, Laušević D, Nedić D. Severe form of generalized sarcoptic mange with secondary piotraumatic folliculitis in dogs: differential diagnosis and epizootiological approach. Ветеринарски Журнал Републике Српске 2020; 201-2.
Uzuegbu M. Oluchi Sarcoptic mange in a dog: A case study Merit Research. IJBBB 2015; 3:005-008.
Downloads
Publicado
Versões
- 2024-09-24 (2)
- 2023-02-06 (1)
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Revista Colombiana de Ciencias Pecuarias
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores autorizam a RCCP a reimprimir o material nela publicado.
A revista permite que o(s) autor(es) detenham os direitos autorais sem restrições, e permitirá que o(s) autor(es) mantenham os direitos de publicação sem restrições.