Aromatic monomers generation by Aspergillus and penicillium spp from residual wheat straw lignin

Authors

  • Eduardo BALTIERRA-TREJO Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) https://orcid.org/0000-0002-9000-2987
  • Liliana MÁRQUEZ-BENAVIDES Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) / Sociedad Mexicana de Ciencia y Tecnología aplicada al Estudio de los Residuos Sólidos SOMERS A.C. https://orcid.org/0000-0003-3738-6608
  • María del Consuelo HERNÁNDEZ-BERRIEL Sociedad Mexicana de Ciencia y Tecnología aplicada al Estudio de los Residuos Sólidos SOMERS A.C. / Instituto Tecnológico de Toluca https://orcid.org/0000-0002-3212-5508
  • Juan Manuel Sánchez-Yáñez Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) https://orcid.org/0000-0001-8166-2142

DOI:

https://doi.org/10.17533/udea.vitae.v22n3a04

Keywords:

Ascomycete, depolymerization, fungus, mitosporic, ligninolytic

Abstract


Background: Wheat straw is an agricultural waste, which contains 17% of lignin, a recalcitrant polymer with biotechnological potential provided it is depolymerized. Lignin depolymerization has attracted interest because it yields aromatics of industrial interest; chemical and physical methods are available but entail economic and environmental constraints. An alternative is to exploit the ligninolytic capacity of mitosporic fungi, such as Aspergillus and Penicillium spp. There are few reports on the use of these funguses in the generation of aromatics by lignin depolymerization. Objetives: To use Aspergillus and Penicillium spp in the biological generation of aromatics from semipurified residual wheat straw lignin. Methods: Funguses were grown in semipurified residual wheat straw lignin for 28 days; produced aromatics were followed using gas chromatography. Results: Obtained results indicate a range of aromatics produced, i.e. 3,5 mg mL-1 guaiacol, 3,3 vanillin, 3,2 hydroxybenzoic acid, 3,3 vanillinic, 10,1 syringic and 21,9 ferulic. Conclusions: Aspergillus and Penicillium represent an ecological option in the exploit of semi-purified residual lignin from wheat straw to generate aromatics in a shorter period from an abundant and cheap residue.
|Abstract
= 156 veces | PDF (ESPAÑOL (ESPAÑA))
= 105 veces|

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Eduardo BALTIERRA-TREJO, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH)

Laboratorio de Residuos Sólidos y Medio Ambiente del Instituto de Investigaciones Agropecuarias y Forestales IIAF, Laboratorio de Microbiología Ambiental del Instituto de Investigaciones Químico-Biológicas IIQB, MSc

Liliana MÁRQUEZ-BENAVIDES, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) / Sociedad Mexicana de Ciencia y Tecnología aplicada al Estudio de los Residuos Sólidos SOMERS A.C.

Laboratorio de Residuos Sólidos y Medio Ambiente del Instituto de Investigaciones Agropecuarias y Forestales IIAF,

Juan Manuel Sánchez-Yáñez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH)

Laboratorio de Microbiología Ambiental del Instituto de Investigaciones Químico-Biológicas IIQB

References

Dashtban M, Schraft H, Syed TA, Qin W. Fungal biodegradation and enzymatic modification. Int J Biochem Mol Biol. 2010;1(1):36-50.

Chávez-Sifontes M, Domine ME. Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Av Cienc Ing. 2013;4(4):15-46.

Gosselink R. Lignin as a renewable aromatic resource for the chemical industry. Wageningen, Nederland: Wageningen University; 2011.

Lomascolo A, Stentelaire C, Asther M, Lesage-Meessen L. Basidiomycetes as new biotechnological tools to generate natural aromatic flavours for the food industry. Trends Biotechnol. 1999;17(7):282-289.

Howard R, Abotsi E, Rensburg E, Howard S. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol. 2004;2(12):602-619.

Ibrahim M, Balakrishnan R, Shamsudeen S, Adam F, Bhawani S. A concise review of the natural existance, synthesis, properties, and applications of syringaldehyde. BioResources. 2012;7(3).

Ferraz A, Durán N. Lignin degradation during softwood decaying by the ascomyceteChrysonilia sitophila. Biodegradation. 1995;6(4):265-274.

Milstein O, Haars A, Sharma A, Vered Y, Shragina L, Trojanowski J, et al. Lignin degrading ability of selected Aspergillus Spp. Appl Biochem Biotechnol. 1984;9(4):393-394.

Chang A, Fan J, Wen X. Screening of fungi capable of highly selective degradation of lignin in rice straw. IntBiodeter Biodegr. 2012;72(0):26-30.

Sun R, Tomkinson J, Zhu W, Wang SQ. Delignification of maize stems by peroxymonosulfuric acid, peroxyformic acid, peracetic acid, and hydrogen peroxide. 1. physicochemical and structural characterization of the solubilized lignins. J Agric Food Chem. 2000;48(4):1253-1262.

Runkel ROH, Witt H. Zur Kenntnis des thermoplastischen Verhaltens von Holz. Holz Roh Werkst. 1953;11(12):457-461.

Wise LE, Murphy M, D’Addieco AA. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap Trade J. 1946;122(2):35-42.

Sánchez-Yánez JM. Breve Tratado de Microbiología Agrícola Teoría y Práctica. Morelia, Michoacán México: Corporativo de Desarrollo Sustentable, Centro de Investigación y Desarrollo de Michoacán, Universidad Michoacana de San Nicolás de Hidalgo, Secretaria de Desarrollo Rural en Michoacán; 2007. 130-133 pp.

Published

2016-05-01

How to Cite

BALTIERRA-TREJO, E., MÁRQUEZ-BENAVIDES, L., HERNÁNDEZ-BERRIEL, M. del C., & Sánchez-Yáñez, J. M. (2016). Aromatic monomers generation by Aspergillus and penicillium spp from residual wheat straw lignin. Vitae, 22(3), 197–204. https://doi.org/10.17533/udea.vitae.v22n3a04

Issue

Section

Biotechnology

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.