Inhibition of a Myotoxic Phospholipase A2 isolated from Crotalus durissus cumanensis by Pentacyclic Triterpenes

Authors

DOI:

https://doi.org/10.17533/udea.vitae.v32n1a356555

Keywords:

Phospholipase A2, triterpenic compounds, molecular docking, snake venom, Crotalus durissus cumanensis

Abstract

BACKGROUND: Ophidian accidents have been recognized as public health events in Colombia since 2004 and have been systematically reported since 2007, constituting a significant public health problem. One of the components present in the venoms of Viperidae snakes is the phospholipase A2 (PLA2) enzyme, playing a fundamental role in snakebite poisoning and responsible for many of the local effects that are not neutralized by antivenoms, the only treatment approved for the management of these accidents. Traditional herbal treatments hold promise, with ethnopharmacological studies emphasizing compounds, particularly pentacyclic triterpenes, as potential inhibitors of PLA2
OBJECTIVE: To identify compounds with the potential to reduce or neutralize the local effects generated by PLA2, present in the venom of snakes of the Viperidae family, the major cause of ophidian accidents in Colombia. 
METHODS: Four triterpenic compounds (madecassic acid, ursolic acid, betulinic acid, and oleanolic acid) were evaluated to determine the inhibitory capacity on the enzymatic activity of myotoxic phospholipase A2, extracted from Crotalus durissus cumanensis venom and purified by RP-HPLC. To determine the inhibitory capacity of the compounds against the enzymatic activity of PLA2, the synthetic monodisperse substrate 4-nitro-3- (octanoloxy) benzoic acid was used. Molecular docking was also performed to identify by visual inspection the interactions between the compounds and the active site of the enzyme. 
RESULTS: The highest percentage of inhibition was presented by ursolic acid (47.01%). This is supported by the results of the molecular docking, where this compound was found to have interactions with Leu2, Phe24, Tyr52, and Lys69, amino acids involved in the catalytic activity of the enzyme. 
CONCLUSIONS: Ursolic acid was determined as the most promising compound among the four evaluated against the local effects generated by PLA2. Future studies may be performed to determine other potential benefits of these compounds versus other biological actions of the enzyme.

|Abstract
= 30 veces | PDF
= 65 veces| | EPUB
= 1 veces|

Downloads

Download data is not yet available.

References

MinSalud, INS, Protocolo de Vigilancia en Salud Pública: Accidente ofídico. https://www.ins.gov.co/buscador/Lineamientos/PRO%20Accidente%20ofidico_.pdf 2017 (accessed 8 September 2023).

MinSalud, INS, Protocolo de Vigilancia de Accidente ofídico. https://www.ins.gov.co/buscador-eventos/Lineamientos/Pro_Accidente%20Of%C3%ADdico.pdf 2022 (accessed 8 September 2023).

INS, Sistema Nacional de Vigilancia en Salud Pública -SIVIGILA. Accidente ofídico. Periodo epidemiológico 13 - 2023. https://app.powerbi.com/view?r=eyJrIjoiMjI2MjAzYjYtMzE5YS00MmM1LTk1ZGEtOTUxYjFiNjlhZjNmIiwidCI6ImE2MmQ2YzdiLTlmNTktNDQ2OS05MzU5LTM1MzcxNDc1OTRiYiIsImMiOjR9 2023 (accessed 16 February 2024).

Sarmiento Acuña K. Aspectos biomédicos del accidente ofídico. Universitas Médica. 2012;53(1):68–85. DOI: https://doi.org/10.11144/Javeriana.umed53-1.abao

Salvador GHM, Florença Cardoso F, Gomes AA, Cavalcante WLG, Gallacci M, Fontes MRM. Search for efficient inhibitors of myotoxic activity induced by ophidian phospholipase A2-like proteins using functional, structural and bioinformatics approaches. Scientific Reports. 2019;9(510). DOI: http://doi.org/10.1038/s41598-018-36839-6

Cardoso FF, Gomes AA, Dreyer TR, Cavalcante WLG, Pai MD, Gallacci M, et al. Neutralization of a bothropic PLA2-like protein by caftaric acid, a novel potent inhibitor of ophidian myotoxicity. Biochimie. 2020;170:163–72. DOI: https://doi.org/10.1016/j.biochi.2020.01.010

Pereañez JA, Patiño AC, Henao-Castañeda IC. Toxinas provenientes de venenos de serpientes: blancos terapéuticos, herramientas en investigación biomédica y agentes con potencial terapéutico. Curare. 2014;1(1):49–60. DOI: https://doi.org/10.16925/cu.v1i1.308

Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, et al. Enzymatic toxins from snake venom: structuralcharacterization and mechanism of catalysis. FEBS Journal. 2011;278:4544–76. DOI: https://doi.org/10.1111/j.1742-4658.2011.08115.x

Carvalho BMA, Santos JDL, Xavier BM, Almeida JR, Resende LM, Martins W, et al. Snake Venom PLA2s Inhibitors Isolated from Brazilian Plants: Synthetic and Natural Molecules. BioMed Research International. 2013;2013. DOI: https://doi.org/10.1155/2013/153045

Pereañez JA, Patiño AC, Núñez V, Osorio E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chemico-Biological Interactions. 2014;220:94–101. DOI: http://doi.org/10.1016/j.cbi.2014.06.015

Samkumar RA, Premnath D, Raj RSDP. Strategy for early callus induction and identifcation of anti‑snake venom triterpenoids from plant extracts and suspension culture of Euphorbia hirta L. 3 Biotech. 2019;9:266. DOI: https://doi.org/10.1007/s13205-019-1790-9

Bernard P, Scior T, Didier B, Hibert M, Berthon JY. Ethnopharmacology and bioinformatic combination for leads discovery: application to phospholipase A2 inhibitors. Phytochemistry. 2001;58(6):865–74. DOI: https://doi.org/10.1016/S0031-9422(01)00312-0

Khan MF, Nahar N, Rashid RB, Chowdhury A, Rashid MA. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). BMC Complementary and Alternative Medicine. 2018;18(48). DOI: https://doi.org/10.1186/s12906-018-2116-x

Preciado L, Pereañez JA, Nuñez V, Lobo-Echeverri T. Characterization of the most promising fraction of Swietenia macrophylla active against myotoxic phospholipases A2: Identification of catechin as one of the active compounds. Vitae. 2016;23(2). DOI: http://dx.doi.org/10.17533/udea.vitae.v23n2a05

Romero-Estrada A, Maldonado-Magaña A, González-Christen J, Marquina-Bahena S, Garduño-Ramírez ML, Rodríguez-López V, et al. Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC Complementary and Alternative Medicine. 2016;16:422. DOI: https://doi.org/10.1186/s12906-016-1397-1

Preciado Rojo LM, Rey Suarez P, Henao-Castañeda IC, Pereañez JA. Betulinic, oleanolic and ursolic acids inhibit the enzymatic and biological effects induced by a P-I snake venom metalloproteinase. Chemico-Biological Interactions. 2018;279:219–26. DOI: https://doi.org/10.1016/j.cbi.2017.12.001

Preciado LM, Pereañez JA, Azhagiya Singam ER, Comer J. Interactions between Triterpenes and a P-I Type Snake Venom Metalloproteinase: Molecular Simulations and Experiments. Toxins (Basel). 2018;10(10):397. DOI: https://doi.org/10.3390/toxins10100397

Pereañez JA, Núñez V, Huancahuire-Vega S, Marangoni S, Ponce-Soto LA. Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis. Toxicon. 2009;53(5). DOI: https://doi.org/10.1016/j.toxicon.2009.01.021

Holzer M, Mackessy SP. An aqueous endpoint assay of snake venom phospholipase A2. Toxicon. 1996;34:1149–55. DOI: https://doi.org/10.1016/0041-0101(96)00057-8

Trott O, Olson A. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry. 2010;31(2):455–61. DOI: https://doi.org/10.1002/jcc.21334

Pettersen E, Goddard T, Huang C, Couch G, Greenblatt D, Meng E, et al. UCSF Chimera - a visualization system for exploratory research and analysis. Journal of computational chemistry. 2004;25(13):1605–12. DOI: https://doi.org/10.1002/jcc.20084

MolView. Available from: molview.org

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics. 2012;4(17). DOI: https://doi.org/10.1186/1758-2946-4-17

Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, et al. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research. 2021;49(W1). DOI: https://doi.org/10.1093/nar/gkab294

Pereañez Jimenez JA. Chapter 6 - Snake venom phospholipases A2 and their roles in snakebite envenomings. In: Phospholipases in Physiology and Pathology. Sajal Chakraborti. Academic press; 2023. p. 105–23. DOI: https://doi.org/10.1016/C2021-1-02265-9

Castro-Amorim J, Novo de Oliveira A, Da Silva SL, Soares AM, Mukherjee AK, Ramos MJ, et al. Catalytically active snake venom PLA2 Enzymes: An overview of its elusive mechanisms of reaction. Journal of Medicinal Chemistry. 2023;66:5364–76. DOI: https://doi.org/10.1021/acs.jmedchem.3c00097

Berg OG, Gelb MH, Tsai MD, Jain MK. Interfacial Enzymology: The Secreted Phospholipase A2-Paradigm. Chemical reviews. 2001;101(9):2313–54. DOI: https://doi.org/10.1021/cr990139w

Dharmappa KK, Kumar RV, Nataraju A, Mohamed R, Shivaprasad HV, Vishwanath BS. Anti-Inflammatory Activity of Oleanolic Acid by Inhibition of Secretory Phospholipase A2. Planta Med. 2009;75:211–5. DOI: https://doi.org/10.1055/s-0028-1088374

Nataraju A, Gowda CDR, Rajesh R, Vishwanath BS. Group IIA Secretory PLA2 Inhibition by Ursolic Acid: A Potent Anti- Inflammatory Molecule. Current Topics in Medicinal Chemistry. 2007;7:801–9. DOI: https://doi.org/10.2174/156802607780487696

Downloads

Published

04-03-2025

How to Cite

Cardona-Alzate, L., Preciado-Rojo, L. M., Barahona-Sanchez, I., Cardona-Cartagena, V., & Pereañez, J. A. (2025). Inhibition of a Myotoxic Phospholipase A2 isolated from Crotalus durissus cumanensis by Pentacyclic Triterpenes. Vitae, 32(1). https://doi.org/10.17533/udea.vitae.v32n1a356555

Issue

Section

Pharmacology and Toxicology

Most read articles by the same author(s)