Antioxidant and Inhibitory Capacity of Tomato Leaf Ethanolic Extract against Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans

Authors

  • Yeiner Mendoza Master Student in Dental Sciences, Faculty of Dentistry, CES University, Medellín, Colombia https://orcid.org/0000-0002-8775-3894
  • Mónica Arias-Londoño Adjunct Professor, Faculty of Sciences and Biotechnology, CES University, Medellín, Colombia https://orcid.org/0000-0002-4935-4817
  • Juliana Sánchez-Garzón Assistant Professor, Faculty of Dentistry, CES University, Medellín, Colombia https://orcid.org/0000-0003-1551-5229
  • Diego Fernando Rojas-Vahos Director, Pharmaceutical Chemistry Program, Faculty of Sciences and Biotechnology, CES University, Medellín, Colombia
  • Jairo Robledo-Sierra Associate Professor, Faculty of Dentistry, CES University, Medellín, Colombia https://orcid.org/0000-0001-6120-8655

DOI:

https://doi.org/10.17533/udea.vitae.v29n3a349996

Keywords:

Lycopersicon esculentum, Tomato, Ethanolic extract, Streptococcus mutans, Porphyromonas gingivalis, Candida albicans, Antioxidant capacity

Abstract

Background: Tomato is a source of bioactive compounds, antimicrobials, and antioxidants. Tomato leaf preparations have been empirically used for anti-inflammatory, analgesic, antibiotic, and antiseptic purposes. However, research on the potential activity of tomato leaf extracts against oral microorganisms and in managing oropharyngeal infections is scarce.

Objective: To investigate tomato leaf ethanolic extract’s antioxidant and growth inhibitory capacity against common oral pathogenic microorganisms, namely, Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans.

Methods: Ethanolic extracts were made from ‘Chonto’ tomato (Lycopersicon esculentum) leaves. The antimicrobial activity was measured with the microdilution technique using vancomycin and fluconazole as positive controls. The antioxidant capacity was measured with the ORAC assay using Trolox as a positive control.

Results: We found a high percentage of growth inhibition (≥100%) against S. mutans and P. gingivalis at a concentration of 500 mg/L. However, the extract was ineffective in inhibiting the growth of C. albicans. Finally, we observed that the extract exerted a high antioxidant capacity (126%) compared to the positive control.

Conclusions: This study provides new insights into the potential antimicrobial effect of tomato leaf extracts on common oral pathogenic bacteria, which may ultimately result in the development of new herbal products that might help prevent and treat oral infections, such as dental caries and periodontal disease. Our findings also support previous studies on the high antioxidant capacity of tomato leaf extracts.

|Abstract
= 582 veces | PDF
= 343 veces|

Downloads

Download data is not yet available.

References

Van Eck J, Kirk DD, Walmsley AM. Tomato (Lycopersicum esculentum). Methods Mol Biol. 2006;343:459-73. DOI: https://doi.org/10.1385/1-59745-130-4:459

Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr. 2018;108(5):1069-91. DOI: https://doi.org/10.1093/ajcn/nqy097

Hsieh MJ, Huang CY, Kiefer R, Lee SD, Maurya N, Velmurugan BK. Cardiovascular Disease and Possible Ways in Which Lycopene Acts as an Efficient Cardio-Protectant against Different Cardiovascular Risk Factors. Molecules. 2022;27(10). DOI: https://doi.org/10.3390/molecules27103235

Silva-Beltran NP, Ruiz-Cruz S, Cira-Chavez LA, Estrada-Alvarado MI, Ornelas-Paz Jde J, Lopez-Mata MA, et al. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. Int J Anal Chem. 2015;2015:284071. DOI: https://doi.org/10.1155/2015/284071

Rattanavipanon W, Nithiphongwarakul C, Sirisuwansith P, Chaiyasothi T, Thakkinstian A, Nathisuwan S, et al. Effect of tomato, lycopene and related products on blood pressure: A systematic review and network meta-analysis. Phytomedicine. 2021;88:153512. DOI: https://doi.org/10.1016/j.phymed.2021.153512

Camara M, Fernandez-Ruiz V, Sanchez-Mata MC, Camara RM, Dominguez L, Sesso HD. Scientific Evidence of the Beneficial Effects of Tomato Products on Cardiovascular Disease and Platelet Aggregation. Front Nutr. 2022;9:849841. DOI: https://doi.org/10.3389/fnut.2022.849841

Rouhi-Boroujeni H, Heidarian E, Rouhi-Boroujeni H, Deris F, Rafieian-Kopaei M. Medicinal Plants with Multiple Effects on Cardiovascular Diseases: A Systematic Review. Curr Pharm Des. 2017;23(7):999-1015. DOI: https://doi.org/10.2174/1381612822666161021160524

Dominic S, Hussain AI, Saleem MH, Alshaya H, Jan BL, Ali S, et al. Variation in the Primary and Secondary Metabolites, Antioxidant and Antibacterial Potentials of Tomatoes, Grown in Soil Blended with Different Concentration of Fly Ash. Plants (Basel). 2022;11(4). DOI: https://doi.org/10.3390/plants11040551

Ma Y, Ma J, Yang T, Cheng W, Lu Y, Cao Y, et al. Components, Antioxidant and Antibacterial Activity of Tomato Seed Oil. Food Sci Technol Res. 2014;20(1):1-6. DOI: https://doi.org/10.3136/fstr.20.1

Szabo K, Dulf FV, Diaconeasa Z, Vodnar DC. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT. 2019;116:1-8. DOI: https://doi.org/10.1016/j.lwt.2019.108558

Tam CC, Nguyen K, Nguyen D, Hamada S, Kwon O, Kuang I, et al. Antimicrobial properties of tomato leaves, stems, and fruit and their relationship to chemical composition. BMC Complement Med Ther. 2021;21(1):229. DOI: https://doi.org/10.1186/s12906-021-03391-2

Sarrazola Moncada AM, Martínez Herrera E, Agudelo Suárez AA, Alzate Suárez M, Arango García LC, Aristizábal Giraldo M, et al. Prácticas sociales asociadas con el uso de la planta de tomatera en afecciones bucales en un grupo de adultos. Rev Cubana Estomatol. 2006;43(2):46-51.

Instituto Nacional de Vigilancia de Medicamentos y Alimentos. Listado de plantas medicinales aceptadas con fines terapéuticos. 2018 [cited June 10, 2022]; Available from: https://repository.udca.edu.co/bitstream/handle/11158/1971/LISTADO-DE-PLANTAS%20MEDICINALES%20ACEPTADAS-DICIEMBRE-2018-dic.pdf;jsessionid=7C4DC3A31E024AC6CEB8955B0024E40F?sequence=4.

Institute of Health Metrics and Evaluation (IHME). Global Burden of Disease Study 2019 (GBD 2019). 2020 [cited June 12, 2022]; Available from: http://ghdx.healthdata.org/gbd-results-tool.

World Health Organization. Oral Health. 2022 [cited June 10, 2022]; Available from: https://www.who.int/news-room/fact-sheets/detail/oral-health.

Clinical and Laboratory Standards Institute. M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 2018 [cited June 15, 2022]; Available from: https://clsi.org/media/1928/m07ed11_sample.pdf.

Clinical and Laboratory Standards Institute. M60 Performance Standards for Antifungal Susceptibility Testing of Yeasts. 2017 [cited June 15, 2022]; Available from: https://clsi.org/media/1895/m60ed1_sample.pdf.

Clinical and Laboratory Standards Institute. M100-S23 Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. 2013 [cited June 15, 2022]; Available from: https://www.researchgate.net/file.PostFileLoader.html?id=55d77c2f614325f5d38b461b&assetKey=AS:273836702928896@1442299165694.

Umar M, Zubairu A, Hamisu HS, Mohammed IB, Oko JO, Abdulkarim IM, et al. Evaluation of Phytochemical and in vitro Antimicrobial Effects of Solanum lycopersicum Linn. (Tomato) on Oral Thrush and Human Cariogenic Pathogens. JAMPS. 2016;11(4):1-9. DOI: https://doi.org/10.9734/JAMPS/2016/31456

Szabo K, Diaconeasa Z, Catoi AF, Vodnar DC. Screening of Ten Tomato Varieties Processing Waste for Bioactive Components and Their Related Antioxidant and Antimicrobial Activities. Antioxidants (Basel). 2019;8(8). DOI: https://doi.org/10.3390/antiox8080292

Taveira M, Silva LR, Vale-Silva LA, Pinto E, Valentao P, Ferreres F, et al. Lycopersicon esculentum seeds: an industrial byproduct as an antimicrobial agent. J Agric Food Chem. 2010;58(17):9529-36. DOI: https://doi.org/10.1021/jf102215g

Desai PR, Holihosur PD, Marathe SV, Kulkarni BB, Vishal UK, Geetanjali RK, et al. Studies on Isolation and Quantification of Lycopene from Tomato and Papaya and its Antioxidant and Antifungal Properties. Int J Agric Innov Res. 2018;6(5):257-60.

Kim DS, Kwack Y, Lee JH, Chun C. Antimicrobial Activity of Various Parts of Tomato Plants Varied with Different Solvent Extracts. Plant Pathol J. 2019;35(2):149-55. DOI: https://doi.org/10.5423/PPJ.OA.07.2018.0132

Sen A, Batra A. Evaluation of Antimicrobial Activity of Different Solvent Extracts of Medicinal Plant: Melia azedarach L. Int J Curr Pharm Res. 2012;4(2):67-73.

Szabo K, Dulf FV, Teleky BE, Eleni P, Boukouvalas C, Krokida M, et al. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods. 2021;10(1). DOI: https://doi.org/10.3390/foods10010110

Ferreres F, Taveira M, Pereira DM, Valentao P, Andrade PB. Tomato ( Lycopersicon esculentum ) seeds: new flavonols and cytotoxic effect. J Agric Food Chem. 2010;58(5):2854-61. DOI: https://doi.org/10.1021/jf904015f

Mendoza Lara YD, Morales PA, Sánchez Garzón J, Patiño Lara JF. Componentes bioactivos del tomate y su posible poder antimicrobiano: estudio in vitro. Rev Cubana Med Nat Tradic. 2020;3(1):1-15.

Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control. 2014;46. https://doi.org/10.1016/j.foodcont.2014.05.047

Stojkovic D, Petrovic J, Sokovic M, Glamoclija J, Kukic-Markovic J, Petrovic S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J Sci Food Agric. 2013;93(13):3205-8. DOI: https://doi.org/10.1002/jsfa.6156

Percentage of growth inhibition of S. mutans under different concentrations of tomato leaf ethanolic extract over time.

Downloads

Published

12-10-2022

How to Cite

Mendoza, Y., Arias-Londoño, M., Sánchez-Garzón, J., Rojas-Vahos, D. F., & Robledo-Sierra, J. (2022). Antioxidant and Inhibitory Capacity of Tomato Leaf Ethanolic Extract against Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans. Vitae, 29(3). https://doi.org/10.17533/udea.vitae.v29n3a349996

Issue

Section

Natural Products

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 > >> 

You may also start an advanced similarity search for this article.