Identification of microorganisms in wet coffee fermentation Coffea arabica Var Catimor and Castillo in Jardín, Antioquia-Colombia, using culture-dependent methods


  • Karina Edith Motato Rocha School of Pharmaceutical and Food Sciences. Universidad de Antioquia, Medellín, Colombia
  • Valentina Gonzalez-Montero School of Pharmaceutical and Food Sciences. Universidad de Antioquia, Medellín, Colombia
  • María Orfilia Román-Morales School of Pharmaceutical and Food Sciences. Universidad de Antioquia, Medellín, Colombia



Coffee Fermentation, Lactic-Acid Bacteria, Yeasts, Coffee arabica, Culture-Dependent Methods


Background: Mild Colombian coffees are recognized worldwide for their high-quality coffee cup. However, there have been some failures in post-harvest practices, such as coffee grain fermentation. These failures could occasionally lead to defects and inconsistencies in quality products and economic losses for coffee farmers. In Colombia, one of the fermentation methods most used by coffee growers is wet fermentation, conducted by submerging the de-pulped coffee beans for enough time in water tanks to remove the mucilage.
Objectives: We evaluated the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours) on the total number of microbial groups. We also identified microorganisms of interest as starter cultures.
Methods: We used a completely randomized experimental design with two factors; the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours), for 9 treatments with two replicates. During the coffee fermentation (1,950 g), the pH and °Brix were monitored. Total counts of different microbial groups (mesophiles, coliforms, lactic-acid bacteria, acetic-acid bacteria, and yeasts) were performed. Various isolates of microorganisms of interest as starter cultures (lactic-acid bacteria and yeasts) were identified using molecular sequencing techniques.
Results: 21 lactic-acid bacteria (LAB) isolates and 22 yeasts were obtained from the different mini-batch fermentation systems. The most abundant lactic-acid bacteria species found were Lactiplantibacillus plantarum (46%) and Levilactobacillus brevis (31%). Pichia kluivery (39%) and Torulaspora delbrueckii (22%) were the most abundant yeast species.
Conclusion The studied factors did not have effect over the microorganism’s development. The identified bacterial and yeasts species have potential as starter cultures for better-quality coffees and in fermentation-related applications.  

= 200 veces | PDF
= 163 veces|


Download data is not yet available.


Jiyuan Zhang S, De Bruyn F, Pothakos V, Torres J, Falconi C, Moccand C. Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica. Appl Environ Microbiol. 2019;15;85(6):02635-18. DOI:

Elhalis H, Cox J, Damian F, Zhao J. Microbiological and Chemical Characteristics of Wet Coffee Fermentation Inoculated with Hansinaspora uvarum and Pichia kudriavzevii and Their Impact on Coffee Sensory Quality. Frontiers in Microbiology 2021; 12. DOI:

Bermudez S, Voora V, Larrea C. Coffee prices and sustainability sustainable commodities marketplace series. International Institute for Sustainable Development [Internet]. 2019 Jun [cited 2023 Jun 9]. Available from:

ICO. Coffee Market report [Internet]. 2023 Feb [cited 2023 Mar 5]; Available from:

Haile M, Kang WH. The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. J Food Qual. 2019; 2019:6. DOI:

Veloso TGR, da Silva M de CS, Cardoso WS, Guarçoni RC, Kasuya MCM, Pereira LL. Effects of environmental factors on microbiota of fruits and soil of Coffea arabica in Brazil. Sci Rep. 2020;10(1):14692. DOI:

Peñuela AE, Zapata AD, Durango DL. Performance of different fermentation methods and the effect on coffee quality (Coffea arabica L.). Coffee Sci [Internet]. 2018 Aug [cited 2021 Nov 21]; 4:465–76. Available from:

Cardoso WS, Agnoletti BZ, de Freitas R, de Abreu Pinheiro F, Pereira LL. Biochemical Aspects of Coffee Fermentation. Food Engineering Series. 2021;149–208. DOI:

Bastian F, Hutabarat OS, Dirpan A, Nainu F, Harapan H, Emran TB, Simal-Gandara J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods. 2021; 10(11):2827. DOI:

Ijanu EM, Kamaruddin · M A, Norashiddin FA. Coffee processing wastewater treatment: a critical review on current treatment technologies with a proposed alternative. 2020;10:11. DOI:

Logorapid. Tabla de códigos Pantone y RGB. 2021 (accessed 2020 August 17).

Macrogen Online Sequencing Order System. 2023 (accessed 2023 May 16).

Benchling. Benchling Biology Software. San Francisco, CA 94107. 2022. (accessed 2023 May 16).

NCBI. BLAST: Basic Local Alignment Search Tool. 2021 (accessed 2023 May 16).

Stecher G, Tamura K, Kumar S. Molecular Evolutionary Genetics Analysis (MEGA) for macOS. Society for Molecular Biology and Evolution. 2020 (accessed 2022 May 2)

R Core Team. R: A language and environment for statistical computing. 2021 (accessed 2022 February 13).

Marín López S, Arcilla Pulgarín J, Montoya Restrepo E, Oliveros Tascón C. Relación entre el estado de madurez del fruto del café y las características de beneficio rendimiento y calidad de la bebida. Cenicafé [Internet]. 2004 Jun. [cited 2021 Mar 29]; 54(4):297-315. 2003. Available from:

BLAST Glossary - BLAST® Help - NCBI Bookshelf. 2023 (accessed 2023 Jun 12).

Orrego D, Zapata-Zapata AD, Kim D. Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production. Energies. 2018; 11(4):786. DOI:

Sulaiman I, Hasni D. Microorganism growth profiles during fermentation of Gayo Arabica wine coffee. IOP Conf Ser Earth Environ Sci [Internet]. 2022 Jan 1 [cited 2022 May 8];951(1):012076. Available from:

Pantoja López F, Rojas Gutiérrez PA, Oriana L, Macias M, Sofía E, Quinayás T. Estudio de algunas variables en el proceso de fermentación de café y su relación con la calidad de taza en el sur de Colombia. Cienc. Tecnol [Internet]. 2015 Jul [cited 2020 Sep 2]. Vol. 3, Available from:

Betancur Henao NY, Motato Rocha KE. Procesos de fermentación natural de café y su relación con el perfil sensorial final taza. Métodos de seguimiento y control para pequeños caficultores en el suroeste antioqueño [Tesis Work]. [Medellín, Colombia]: Universidad de Antioquia; 2020.

de Melo Pereira G V., da Silva Vale A, de Carvalho Neto DP, Muynarsk ES, Soccol VT, Soccol CR. Lactic acid bacteria: what coffee industry should know? Vol. 31, Current Opinion in Food Science. Elsevier; 2020; 31:1–8. DOI:

Leong KH, Chen YS, Pan SF, Chen JJ, Wu HC, Chang YC. Diversity of lactic acid bacteria associated with fresh coffee cherries in Taiwan. Curr Microbiol. 2014;68(4):440–7. DOI:

Pothakos V, De Vuyst L, Zhang SJ, De Bruyn F, Verce M, Torres J. Temporal shotgun metagenomics of an Ecuadorian coffee fermentation process highlights the predominance of lactic acid bacteria. Curr Res Biotechnol. 2020;2:1–15. DOI:

Mayo B, Aleksandrzak-Piekarczyk T, Fernández M, Kowalczyk M, Álvarez-Martín P, Bardowski J. Updates in the Metabolism of Lactic Acid Bacteria. Biotechnology of Lactic Acid Bacteria: Novel Applications. 2010; 3–33. DOI:

de Oliveira Junqueira, A, de Melo Pereira, G., Coral Medina, J. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Sci Rep 2019;9(1):1–10. DOI:

Bintsis T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018;4(4):665-684. DOI:

Wang C, Sun J, Lassabliere B, Yu B, Liu SQ. Coffee flavour modification through controlled fermentations of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part I. Effects from individual yeasts. Food Res Int. 2020;136:109588. DOI:

da Mota, M.C., Batista, N.N., Rabelo, M.H., Ribeiro, D.E., Borém, F.M., & Schwan, R.F. Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food research international. 2020;136, 109482. DOI:

Silva CF, Batista LR, Abreu LM, Dias ES, Schwan RF. Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiol . 2008;25(8):951–7. DOI:

Pino A, Espinosa Y, Cabrera E. Characterization of the Rhizosphere Bacterial Microbiome and Coffee Bean Fermentation in the Castillo-Tambo and Bourbon Varieties in the Popayán-Colombia Plateau. BMC Plant Biol. 2023;23,217. DOI:

Jiyuan Zhang S, De Bruyn F, Pothakos V, Contreras GF, Cai Z, Moccand C. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front Microbiol. 2019;10,2621:1–24. DOI:

Peñuela-Martínez AE, Velasquez-Emiliani AV, Angel CA. Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation. 2023; 9(4):343. DOI:

Ferreira I, de Sousa Melo D, Menezes AGT, Fonseca HC, de Assis BBT, Ramos CL. Evaluation of potentially probiotic yeasts and Lactiplantibacillus plantarum in co-culture for the elaboration of a functional plant-based fermented beverage. Food Research International. 2022 Oct 1;160:111697. DOI:

Kawahara A, Zendo T, Matsusaki H. Identification and characterization of bacteriocin biosynthetic gene clusters found in multiple bacteriocins producing Lactiplantibacillus plantarum PUK6. J Biosci Bioeng. 2022;133(5):444-451. DOI:

Vougiouklaki D, Tsironi T, Papaparaskevas J, Halvatsiotis P, Houhoula D. Characterization of Lacticaseibacillus rhamnosus, Levilactobacillus brevis and Lactiplantibacillus plantarum Metabolites and Evaluation of Their Antimicrobial Activity against Food Pathogens. Appl. Sci. 2022; 12(2):660. DOI:

Tenea GN, Ortega C. Genome Characterization of Lactiplantibacillus plantarum Strain UTNGt2 Originated from Theobroma grandiflorum (White Cacao) of Ecuadorian Amazon: Antimicrobial Peptides from Safety to Potential Applications. Antibiotics. 2021; 10(4):383. DOI:

Liu DM, Huang YY, Liang MH. Analysis of the probiotic characteristics and adaptability of lactiplantibacillus plantarum DMDL 9010 to gastrointestinal environment by complete genome sequencing and corresponding phenotypes. LWT. 2022;158, 113129-. DOI:

Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol. 2020;70(4):2782-2858. DOI:

Cruz-O’Byrne R, Gamez-Guzman A, Piraneque-Gambasica N, Aguirre-Forero S. Genomic sequencing in Colombian coffee fermentation reveals new records of yeast species. Food Biosci. 2023;1;52:102415. DOI:

Cassimiro DM de J, Batista NN, Fonseca HC, Naves JAO, Dias DR, Schwan RF. Coinoculation of lactic acid bacteria and yeasts increases the quality of wet fermented Arabica coffee. Int J Food Microbiol. 2022; 16; 369:109627. DOI:

Cruz-O’byrne R, Piraneque-Gambasica N, Aguirre-Forero S. Microbial diversity associated with spontaneous coffee bean fermentation process and specialty coffee production in northern Colombia. Int J Food Microbiol. 2021;354:109282. DOI:

Hale AR, Ruegger PM, Rolshausen P, Borneman J, Yang J in. Fungi associated with the potato taste defect in coffee beans from Rwanda. Botanical Studies 2022;63(1):1–8. DOI:

de Carvalho Neto DP, de Melo Pereira GV, Tanobe VOA, Soccol VT, da Silva BJG, Rodrigues C. Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. Fermentation. 2017; 3;1:11. DOI:




How to Cite

Motato Rocha, K. E., Gonzalez-Montero, V., & Román-Morales , M. O. (2024). Identification of microorganisms in wet coffee fermentation Coffea arabica Var Catimor and Castillo in Jardín, Antioquia-Colombia, using culture-dependent methods. Vitae, 31(1).



Foods: Science, Engineering and Technology