Characterization of decontamination procedure of beef carcasses at slaughterhouses in the province of Antioquia, Colombia

Authors

DOI:

https://doi.org/10.17533/udea.vitae.v30n3a351649

Keywords:

Bovine carcass, Carcass decontamination, Processing interventions, Organic Acids

Abstract

BACKGROUND: Beef slaughterhouses must use a carcass decontamination procedure to control pathogens and thus prevent foodborne diseases transmitted by meat.
OBJECTIVES: This study aimed to characterize beef carcass decontamination procedures at slaughterhouses located in the province of Antioquia (Colombia). All the slaughterhouses were open, registered, and approved by Invima (Instituto Nacional de Vigilancia de Medicamentos y Alimentos in Spanish) at the time of the study.
METHODS: This descriptive study collected information from 23 beef slaughterhouses between July 2019 and April 2021 through documentary reviews and visits to slaughterhouses, using forms and questionnaires.
RESULTS: The study allowed the characterization of the procedures used to decontaminate beef carcasses, showing that the chemical disinfection of the carcasses is used to control microorganisms in at least 73.9% of the slaughterhouses analyzed. According to secondary sources, it was found that most of the slaughterhouses are small (slaughter volume <50,000 heads per year); 10 of them use citric acid, lactic acid, peracetic acid, and a mixture of organic acids in concentrations between 900 and 1,200 ppm, 1.5 and 1.7%, 180 and 190 ppm, and 900 and 1,200 ppm, respectively, as carcass disinfectants and according to the technical data sheet of the product. During the visits and through the application of the questionnaire, it was found that the 12 slaughterhouses had implemented chemical disinfection which is not scientifically based, using manual devices as an intervention method to control pathogenic microorganisms. It was found that the type of company, slaughter volume, and the lack of financial resources are the determining factors in the selection of decontamination procedures. The validation of the beef carcass decontamination procedures in the different slaughterhouses in the study was demonstrated.
CONCLUSIONS:Although it was established that at least one decontamination procedure, such as chemical disinfection, is used in the slaughterhouses of study, this option is not supported by scientific or technical evidence. The findings support the need for improvements in the slaughterhouses of the province of Antioquia, including the improvement of surveillance programs to reduce pathogens in the meat chain effectively.

|Abstract
= 378 veces | PDF
= 300 veces| | HTML
= 2 veces|

Downloads

Download data is not yet available.

Author Biography

Jorge Arturo Fernández Silva, Universidad de Antioquia

Epidemiología y salud pública veterinaria

Escuela de Medicina Veterinaria

Facultad de Ciencias Agrarias

References

Nielsen B, Colle MJ, Ünlü G. Meat safety and quality: a biological approach. Int J Food Sci Technol. 2021;56(1):39–51 https://doi.org/10.1111/ijfs.14602

Organización Mundial de la Salud OMS, FAO. Guía FAO/OMS para la aplicación de principios y procedimientos de análisis de riesgos en situaciones de emergencia relativas a la inocuidad de los alimentos [Internet]. 2011 [cited 2019 Oct 15]. Available from: http://www.fao.org/3/ba0092s/ba0092s00.pdf

República de Colombia, Ministerio de la Protección Social. Decreto 1500 de 2007, mayo 4, por el cual se establece el reglamento técnico a través del cual se crea el Sistema Oficial de Inspección, Vigilancia y Control de la Carne, Productos Cárnicos Comestibles y Derivados Cárnicos, destinados para el Consumo Humano. Colombia: El Ministerio; 2007

República de Colombia, Ministerio de Salud y Protección Social. Resolución 2674 de 2013, julio 22, Por la cual se reglamenta el artículo 126 del Decreto Ley 019 de 2012 y se dictan otras disposiciones. Colombia: El Ministerio; 2013.

Colombia. Instituto Nacional de Salud. Enfermedades Transmitidas por Alimentos Colombia primer semestre 2019 [Internet]. 2019 [cited 2021 Jun 6]. Available from: https://www.ins.gov.co/buscador-eventos/Informesdeevento/ENFERMEDADES TRANSMITIDAS POR ALIMENTOS_2019.pdf

Bosilevac JM, Nou X, Barkocy-Gallagher GA, Arthur TM, Koohmaraie M. Treatments Using Hot Water Instead of Lactic Acid Reduce Levels of Aerobic Bacteria and Enterobacteriaceae and Reduce the Prevalence of Escherichia coli O157:H7 on Preevisceration Beef Carcasses. J Food Prot. 2006 Aug;69(8):1808–1813. https://doi.org/10.4315/0362-028x-69.8.1808

Dickson JS, Anderson ME. Microbiological decontamination of food animal carcasses by washing and sanitizing systems: A review. J Food Prot. 1992 Feb 1;55(2):133–140. https://doi.org/10.4315/0362-028x-55.2.133

Hugas M, Tsigarida E. Pros and cons of carcass decontamination: The role of the European Food Safety Authority. Meat Sci. 2008;78(1–2):43–52. https://doi.org/10.1016/j.meatsci.2007.09.001

Sallam KI, Abd-Elghany SM, Hussein MA, Imre K, Morar A, Morshdy AE, et al. Microbial Decontamination of Beef Carcass Surfaces by Lactic Acid, Acetic Acid, and Trisodium Phosphate Sprays. Biomed Res Int. 2020;2020. https://doi.org/10.1155/2020/2324358

Kocharunchitt C, Mellefont L, Bowman JP, Ross T. Application of chlorine dioxide and peroxyacetic acid during spray chilling as a potential antimicrobial intervention for beef carcasses. Food Microbiol. 2020;87. https://doi.org/10.1016/j.fm.2019.103355

Greig JD, Waddell L, Wilhelm B, Wilkins W, Bucher O, Parker S, et al. The efficacy of interventions applied during primary processing on contamination of beef carcasses with Escherichia coli: A systematic review-meta-analysis of the published research. Food Control. 2012;27(2):385–397. https://doi.org/10.1016/j.foodcont.2012.03.019

Corpas-Iguarán EJ, Arcila-Henao JS. Recuento de coliformes y Escherichia coli en canales bovinas sometidas a tratamientos físicos y químicos. Biotecnol en el Sect Agropecu y Agroindustrial [Internet]. 2014 [cited 2018 Oct 6];12(2):125–133. Available from: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1692-35612014000200014&lng=en

Valencia Montero V, Acero Plazas V. Comparación de ácido láctico, ácido peroxiacético e hipoclorito de sodio en la desinfección de canales bovinas en un frigorífico de Bogotá, Colombia. Rev Med Vet (Bogotá). 2013;(26):13–23. https://doi.org/10.19052/mv.2632

Cates SC, Viator CL, Karns SA, Muth MK. Food Safety Practices of Meat Slaughter Plants : Findings from a National Survey. Food Prot trends. 2008;28(1):26–36.

Viator CL, Cates SC, Karns SA, Muth MK. Food safety practices in the U.S. meat slaughter and processing industry: Changes from 2005 to 2015. J Food Prot. 2017;80(8):1384–1392. https://doi.org/10.4315/0362-028X.JFP-16-378

Pan American Health Organization, World Health Organization - PAHO. Surveillance and prevention of foodborne diseases [Internet]. 1997 [cited 2019 Sep 1]. p. 20. Available from: http://iris.paho.org/xmlui/bitstream/handle/123456789/19083/doc198.pdf?sequence=1&isAllowed=y

Vipham JL, Chaves BD, Trinetta V. Mind the gaps: How can food safety gaps be addressed in developing nations? Anim Front. 2018;8(4):16–25. https://doi.org/10.1093/af/vfy020

Zhilyaev S, Cadavez V, Gonzales-Barron U, Phetxumphou K, Gallagher D. Meta-analysis on the effect of interventions used in cattle processing plants to reduce Escherichia coli contamination. Food Res Int. 2017;93:16–25. https://doi.org/10.1016/j.foodres.2017.01.005

Antic D, Houf K, Michalopoulou E, Blagojevic B. Beef abattoir interventions in a risk-based meat safety assurance system. Meat Sci. 2021;182:108622. https://doi.org/10.1016/j.meatsci.2021.108622

EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the evaluation of the safety and efficacy of lactic acid for the removal of microbial surface contamination of beef carcasses, cuts and trimmings. EFSA J. 2011;9(7):2317, 35 pp. https://doi.org/10.2903/j.efsa.2011.2317

Colombia. DANE. Encuesta de sacrificio de ganado (ESAG) censo-Sacrificio de ganado_total_nacional_enero_diciembre_2019 [Internet]. 2020 [cited 2021 Oct 12]. Available from: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-de-sacrificio-de-ganado

Varkevisser CM, Pathmanathan I, Brownlee A. Diseño y realización de proyectos de investigacion sobre sistemas de salud [Internet]. Ottawa: Centro Internacional de Investigaciones para el Desarrollo (CIID); 1995 [cited 2020 Oct 22]. p. xix + 376. Available from: https://iris.paho.org/bitstream/handle/10665.2/3088/Disenio y realizacion de proyectos de investigacion sobre sistemas de salud (2), 1.pdf?sequence=1

Dohoo I, Martin W, Stryhn H. Questionnaire design. In: Veterinary epidemiologic research. 2nd ed. Charlottetown; 2009. p. 57–68.

República de Colombia. Ministerio de Salud y Protección Social. Circular 0046 de 2014 [Internet]. 2014 [cited 2022 Feb 27]. Available from: https://www.minsalud.gov.co/Normatividad_Nuevo/Circular 0046 de 2014.pdf

República de Colombia. Ministerio de Salud y Protección Social. Circular 46 de 2016 [Internet]. 2016 [cited 2022 Feb 27]. Available from: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/circular-46-de-2016.pdf

Algino RJ, Ingham SC, Zhu J. Survey of Antimicrobial Effects of Beef Carcass Intervention Treatments in Very Small State-Inspected Slaughter Plants. J Food Sci. 2007 Jun;72(5):M173–M179. https://doi.org/10.1111/j.1750-3841.2007.00386.x

Brashears MM, Chaves BD. The diversity of beef safety: A global reason to strengthen our current systems. Meat Sci. 2017;132:59–71. https://doi.org/10.1016/j.meatsci.2017.03.015

Essendoubi S, Stashko N, So I, Gensler G, Rolheiser D, Mainali C. Prevalence of Shiga toxin-producing Escherichia coli (STEC) O157:H7, Six non-O157 STECs, and Salmonella on beef carcasses in Provincially Licensed Abattoirs in Alberta, Canada. Food Control. 2019;105:226–232. https://doi.org/10.1016/j.foodcont.2019.05.032

República de Colombia, Ministerio de Salud y Protección Social. Resolución 240 de 2013. Por la cual se establecen los requisitos sanitarios para el funcionamiento de las plantas de beneficio animal de las especies bovina, bufalina y porcina, planta de desposte y almacenamiento, comercialización, expendio, transporte, importación o exportación de carne y productos cárnicos comestibles. Colombia: El Ministerio; 2013.

López AM, Sáez AC, Marteache AH, Martín de Santos MR. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) sobre medidas de prevención y recomendaciones aplicables para evitar posibles infecciones alimentarias por cepas de Escherichia coli verotoxigénicos. Rev Del Com Científico La AESAN [Internet]. 2012 [cited 2022 Apr 19];16:71–100. Available from: https://dialnet.unirioja.es/servlet/articulo?codigo=5858584

Han J, Luo X, Zhang Y, Zhu L, Mao Y, Dong P, et al. Effects of spraying lactic acid and peroxyacetic acid on the bacterial decontamination and bacterial composition of beef carcasses. Meat Sci. 2020;164:108104. https://doi.org/10.1016/j.meatsci.2020.108104

Huffman R. Current and future technologies for the decontamination of carcasses and fresh meat. Meat Sci. 2002;62(3):285–294. https://doi.org/10.1016/S0309-1740(02)00120-1

Iñiguez-Moreno M, Avila-Novoa MG, Iñiguez-Moreno E, Guerrero-Medina PJ, Gutiérrez-Lomelí M. Antimicrobial activity of disinfectants commonly used in the food industry in Mexico. J Glob Antimicrob Resist. 2017;10:143–147. https://doi.org/10.1016/j.jgar.2017.05.013

Signorini M, Costa M, Teitelbaum D, Restovich V, Brasesco H, García D, et al. Evaluation of decontamination efficacy of commonly used antimicrobial interventions for beef carcasses against Shiga toxin-producing Escherichia coli. Meat Sci. 2018;142:44–51. https://doi.org/10.1016/j.meatsci.2018.04.009

Mohan A, Pohlman FW. Role of organic acids and peroxyacetic acid as antimicrobial intervention for controlling Escherichia coli O157: H7 on beef trimmings. LWT - Food Sci Technol. 2016;65:868–873. https://doi.org/10.1016/j.lwt.2015.08.077

FDA. 21 CFR 173.370 [Internet]. 2022 [cited 2022 Oct 4]. Available from: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=173.370

Castillo A, Lucia LM, Roberson DB, Stevenson TH, Mercado I, Acuff GR. Lactic Acid Sprays Reduce Bacterial Pathogens on Cold Beef Carcass Surfaces and in Subsequently Produced Ground Beef. J Food Prot. 2001;64(1):58–62. https://doi.org/10.4315/0362-028X-64.1.58

Cutter CN, Siragusa GR. Efficacy of Organic Acids Against Escherichia coli 0157: H7 Attached to Beef Carcass Tissue Using a Pilot Scale Model Carcass Washer. J Food Prot. 1994;57(2):97–103. https://doi.org/10.4315/0362-028X-57.2.97

Loretz M, Stephan R, Zweifel C. Antibacterial activity of decontamination treatments for cattle hides and beef carcasses. Food Control. 2011;347–359. https://doi.org/10.1016/j.foodcont.2010.09.004

Castillo A, Lucia LM, Goodson KJ, Savell JW, Acuff GR. Use of Hot Water for Beef Carcass Decontamination. J Food Prot. 1998;61(1):19–25. https://doi.org/10.4315/0362-028X-61.1.19

Young I, Wilhelm BJ, Cahill S, Nakagawa R, Desmarchelier P, Rajić A. A rapid systematic review and meta-Analysis of the efficacy of slaughter and processing interventions to control nontyphoidal salmonella in beef and pork. J Food Prot. 2016 Dec;79(12):2196–2210. https://doi.org/10.4315/0362-028X.JFP-16-203

Phebus RK, Nutsch AL, Schafer DE, Wilson RC, Riemann MJ, Leising JD, et al. Comparison of steam pasteurization and other methods for reduction of pathogens on surfaces of freshly slaughtered beef. J Food Prot. 1997;60(5):476–484. https://doi.org/10.4315/0362-028X-60.5.476

Pollari F, Christidis T, Pintar KDM, Nesbitt A, Farber J, Lavoie MC, et al. Evidence for the benefits of food chain interventions on E. coli O157:H7/NM prevalence in retail ground beef and human disease incidence: A success story. Can J Public Heal. 2017;108(1):e71–e78. https://doi.org/10.17269/CJPH.108.5655

Slaughterhouses

Downloads

Published

22-09-2023

How to Cite

Sánchez-Acevedo, M., Peña Serna, C., Garay Pineda, F. J., & Silva, J. A. F. (2023). Characterization of decontamination procedure of beef carcasses at slaughterhouses in the province of Antioquia, Colombia. Vitae, 30(3). https://doi.org/10.17533/udea.vitae.v30n3a351649

Issue

Section

Foods: Science, Engineering and Technology