Technofunctional and bioactive properties of flours obtained from six native potato varieties (Solanum tuberosum) from the Cundiboyacense region

Authors

  • Ruth Mary Benavides-Guevara Universidad Nacional Abierta y a Distancia – UNAD
  • Ibeth Rodríguez-González Universidad Nacional Abierta y a Distancia – UNAD
  • Yuneidys Mariet Oñate Perpiñán Universidad Nacional Abierta y a Distancia – UNAD

DOI:

https://doi.org/10.17533/udea.vitae.v33n1a362612

Keywords:

Antioxidant capacity, total phenolics, water absorption capacity, oil absorption capacity, swelling power, anthocyanins

Abstract

BACKGROUND: In Latin America, approximately 4,732 native potato varieties have been recorded, representing an autochthonous product that plays a crucial role in food security and nutrition for the population. However, there remains a need to explore new forms of consumption, such as native potato flour, and to recognize its technological potential and antioxidant capacity, positioning it as an alternative and innovative ingredient for the food industry. OBJECTIVE: This research evaluated the technofunctional properties, color, and antioxidant capacity of six varieties of native potato flours. METHODS: Six native potato varieties (Solanum tuberosum): Yana Shungo, Puca Shungo, Alcarrosa, Quincha, Valvanera, and Sangre de Toro, were studied. For analysis, the samples were dried and ground. Water and oil absorption capacities, swelling power, color parameters, total phenolic content, and antioxidant capacity (DPPH, ABTS, and FRAP) were determined. RESULTS: The Puca Shungo variety exhibited the highest water absorption capacity (4.61 ± 0.28 g/g), while Valvanera showed the greatest swelling power (5.45 ± 0.40 mL/g). Sangre de Toro presented the highest oil absorption capacity (2.75 ± 0.03 g/g). Regarding color parameters, Valvanera displayed the highest lightness (L* = 78.91 ± 0.81), whereas Puca Shungo and Alcarrosa exhibited intense yellow coloration (b* = 21.25 ± 2.77 and 22.76 ± 2.67, respectively). In contrast, Sangre de Toro showed an intense red coloration (a* = 21.65 ± 1.32) and lower lightness (L* = 48.57 ± 1.73). Furthermore, the Sangre de Toro variety demonstrated significantly high antioxidant properties, with antioxidant capacities of 5.386 ± 0.209 µmol TE/g DM (ABTS), 3.528 ± 0.153 µmol TE/g DM (DPPH), and 5.104 ± 0.144 µmol TE/g DM (FRAP), as well as a total phenolic content of 1.442 ± 0.06 mg GAE/g DM. The Yana Shungo variety ranked second in terms of antioxidant capacity. CONCLUSION: The flours obtained from the evaluated varieties exhibit high antioxidant content and high water and oil absorption capacities. This study contributes to the recognition and characterization of native potatoes cultivated in the Cundiboyacense region of Colombia for their use as ingredients in the food industry.

|Abstract
= 273 veces | GRAPHICAL ABSTRACT
= 11 veces| | PDF
= 38 veces| | EPUB
= 3 veces|

Downloads

Download data is not yet available.

Author Biographies

Ruth Mary Benavides-Guevara , Universidad Nacional Abierta y a Distancia – UNAD

Escuela de Ciencias Básicas, Tecnología e Ingeniería

Universidad Nacional Abierta y a Distancia, Bogotá, Colombia, Investigador

Ibeth Rodríguez-González, Universidad Nacional Abierta y a Distancia – UNAD

Escuela de Ciencias Básicas, Tecnología e Ingeniería

Universidad Nacional Abierta y a Distancia, Bogotá, Colombia, Investigador

Yuneidys Mariet Oñate Perpiñán, Universidad Nacional Abierta y a Distancia – UNAD

Instituto Técnico Profesional

Universidad Nacional Abierta y a Distancia, Bogotá, Colombia

References

FAO. FAOSTAT Crops and livestock products [Internet]. 2025 [cited 2025 Dec 28]. Available from: http://www.fao.org/faostat/es/#data/TP

Devaux A, Ordinola M, Suarez V, Hareau G. Situación actual y perspectivas del procesamiento de papa en la zona andina, implicancias para el mejoramiento genético y la selección de variedades [Internet]. CGIAR; 2024 [cited 2025 Dec 28]. 52 p. Available from: https://cgspace.cgiar.org/server/api/core/bitstreams/9047d865-3cc3-4b8a-99b3-784210690d28/content

Moreno JM D, Cerón MLS, Valbuena RBI. Catálogo de 60 variedades [Internet]. Corpoica; 2009 [cited 2025 Dec 28]. 67 p. Available from: https://repository.agrosavia.co/bitstreams/6b883b89-6fa3-4b36-a676-eb87537ec9a1/download

Manrique-Carpintero NC, Berdugo-Cely JA, Cerón-Souza I, Lasso-Paredes Z, Reyes-Herrera PH, Yockteng R. Defining a diverse core collection of the Colombian Central Collection of potatoes: a tool to advance research and breeding. Front Plant Sci. 2023;14:1046400. DOI: https://doi.org/10.3389/fpls.2023.1046400

Khoury CK, Achicanoy HA, Bjorkman AD, Navarro-Racines C, Guarino L, Flores-Palacios X, et al. Origins of food crops connect countries worldwide. Proc R Soc B. 2016;283(1832):20160792. DOI: http://dx.doi.org/10.1098/rspb.2016.0792

Galvis-Tarazona DY, Ojeda-Pérez ZZ, Arias-Moreno DM. Cultural and ethnobotanical legacy of native potatoes in Colombia. J Ethnobiol Ethnomed. 2022;18(1). DOI: https://doi.org/10.1186/s13002-022-00557-1

Sun C, Zhou J, Ma Y, Xu Y, Pan B, Zhang Z. A review of remote sensing for potato traits characterization in precision agriculture. Front Plant Sci. 2022;13:871859. DOI: https://doi.org/10.3389/fpls.2022.871859

Behn A, Lizana C, Zapata F, Gonzalez A, Reyes-Díaz M, Fuentes D. Phenolic and anthocyanin content characterization related to genetic diversity analysis of Solanum tuberosum subsp. tuberosum Chilotanum Group in southern Chile. Front Plant Sci. 2023;13:1045894. DOI: https://doi.org/10.3389/fpls.2022.1045894

Zaheer K, Akhtar MH. Potato production, usage, and nutrition—A review. Crit Rev Food Sci Nutr. 2016;56(5):711–721. DOI: https://doi.org/10.1080/10408398.2012.724479

Vaitkevičienė N, Kulaitienė J, Jarienė E, Levickienė D, Danillčenko H, Średnicka-Tober D, et al. Characterization of bioactive compounds in colored potato (Solanum tuberosum L.) cultivars grown with conventional, organic, and biodynamic methods. Sustainability. 2020;12(7):2701. DOI: https://doi.org/10.3390/su12072701

Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem. 2011;59(13):6837–6846. DOI: https://doi.org/10.1021/jf2013875

Smeriglio A, Barreca D, Bellocco E, Trombetta D. Chemistry, pharmacology and health benefits of anthocyanins. Phytother Res. 2016;30(8):1265–1286. DOI: https://doi.org/10.1002/ptr.5642

Brown CR, Culley D, Bonierbale M, Amorós W. Anthocyanin, carotenoid content, and antioxidant values in native South American potato cultivars. HortScience. 2007;42(7):1733–1736. DOI: https://doi.org/10.21273/HORTSCI.42.7.1733

Mishra T, Raigond P, Thakur N, et al. Recent updates on healthy phytoconstituents in potato: a nutritional depository. Potato Res. 2020;63(3):323–343. DOI: https://doi.org/10.1007/s11540-019-09442-z

Zhu HK, Fang XF, Wang Y, Li D, Wang LJ. Thermal, structure, and rheological properties of native potato flour prepared under different combined drying methods. Dry Technol. 2021;39(5):698–709. DOI: https://doi.org/10.1080/07373937.2019.1705332

Mojo-Quisani A, Licona-Pacco K, Choque-Quispe D, Calla-Florez M, Ligarda-Samanez CA, Mamani-Condori R, et al. Physicochemical properties of starch of four varieties of native potatoes. Heliyon. 2024;10(16):e35809. DOI: https://doi.org/10.1016/j.heliyon.2024.e35809

Salazar D, Arancibia M, Raza K, López-Caballero ME, Montero MP. Influence of underutilized unripe banana (Cavendish) flour in the formulation of healthier chorizo. Foods. 2021;10(7):1486. DOI: https://doi.org/10.3390/foods10071486

Campos D, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops. J Sci Food Agric. 2006;86(10):1481–1488. DOI: https://doi.org/10.1002/jsfa.2529

Zhang L, Gao Y, Deng B, Ru W, Tong C, Bao J. Physicochemical, nutritional, and antioxidant properties in seven sweet potato flours. Front Nutr. 2022;9:923257. DOI: https://doi.org/10.3389/fnut.2022.923257

Sabuncu M, Dulger Altıner D, Sahan Y. In vitro biological activity and nutritional evaluation of purple potato (Solanum tuberosum L. var. Vitelotte). BMC Chem. 2025;19(1):116–134. DOI: https://doi.org/10.1186/s13065-025-01484-4

Liszka-Skoczylas M, Berski W, Witczak M, Skoczylas Ł, Kowalska I, Smoleń S, et al. The influence of hydroponic potato plant cultivation on selected properties of starch isolated from its tubers. Molecules. 2022;27(3):856. DOI: https://doi.org/10.3390/molecules27030856

Zięba T, Solińska D, Kapelko-Żeberska M, Gryszkin A, Babić J, Ačkar Đ, et al. Properties of potato starch roasted with apple distillery wastewater. Polymers. 2020;12(8):1668. DOI: https://doi.org/10.3390/polym12081668

Samaniego I, Espin S, Cuesta X, Arias V, Rubio A, Llerena W, et al. Analysis of environmental conditions effect in the phytochemical composition of potato cultivars. Plants. 2020;9(7):815. DOI: https://doi.org/10.3390/plants9070815

Badia-Olmos C, Laguna L, Haros CM, Tárrega A. Techno-functional and rheological properties of alternative plant-based flours. Foods. 2023;12(7):1411. DOI: https://doi.org/10.3390/foods12071411

Berggren S. Water holding capacity and viscosity of ingredients from oats: the effect of β-glucan and starch content, particle size, pH and temperature [Internet]. 2018. Available from: https://www.diva-portal.org/smash/record.jsf?pid=diva2:1180722

Amandikwa C, Iwe MO, Uzomah A, Olawuni AI. Physico-chemical properties of wheat-yam flour composite bread. Niger Food J. 2015;33(1):12–17. DOI: https://doi.org/10.1016/j.nifoj.2015.04.011

Schmitz E, Karlsson EN, Adlercreutz P. Altering the water holding capacity of potato pulp via structural modifications of the pectic polysaccharides. Carbohydr Polym Technol Appl. 2021;2:100153. DOI: https://doi.org/10.1016/j.carpta.2021.100153

Blasa M, Gennari L, Angelino D, Ninfali P. Fruit and vegetable antioxidants in health. In: Bioactive foods in promoting health. Academic Press; 2010. p. 37–58. DOI: https://doi.org/10.1016/B978-0-12-374628-3.00003-7

Zhu F, Sun J. Physicochemical and sensory properties of steamed bread fortified with purple sweet potato flour. Food Biosci. 2019;30:100411. DOI: https://doi.org/10.1016/j.fbio.2019.04.012

Lachman J, Hamouz K, Orsák M, Pivec V, Dvořák P. The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Sci Hortic. 2008;117(2):109–114. DOI: https://doi.org/10.1016/j.scienta.2008.03.030

Cavalcanti RN, Koshima CC, Forster-Carneiro T, Gomes MTMS, Rostagno MA, Prado JM, Meireles MAA. Uses and applications of extracts from natural sources. In: Natural product extraction: principles and applications. Cambridge: Royal Society of Chemistry; 2022. p. 1–65. DOI: https://doi.org/10.1039/9781839165894-00001

Samaniego I, Espin S, Cuesta X, Arias V, Rubio A, Llerena W, et al. Analysis of environmental conditions effect in the phytochemical composition of potato (Solanum tuberosum) cultivars. Plants. 2020;9(7):815. DOI: https://doi.org/10.3390/plants9070815

Guerrero CM, Cuvi MJA, Pillajo GO, Hernández TL, Concellón A. Efecto de la cocción sobre la composición química y capacidad antioxidante de papas nativas del Ecuador. Ecuador es Calidad. 2015;2(2). DOI: https://doi.org/10.36331/revista.v2i2.15

Campos D, Noratto G, Chirinos R, Arbizu C, Roca W, Cisneros-Zevallos L. Antioxidant capacity and secondary metabolites in four species of Andean tuber crops: native potato (Solanum sp.), mashua (Tropaeolum tuberosum Ruiz & Pavón), oca (Oxalis tuberosa Molina) and ulluco (Ullucus tuberosus Caldas). J Sci Food Agric. 2006;86(10):1481–1488. DOI: https://doi.org/10.1002/jsfa.2529

Burgos G, Amoros W, Muñoa L, Sosa P, Cayhualla E, Sanchez C, et al. Total phenolic, total anthocyanin and phenolic acid concentrations and antioxidant activity of purple-fleshed potatoes as affected by boiling. J Food Compos Anal. 2013;30(1):6–12. DOI: https://doi.org/10.1016/j.jfca.2012.12.001

Yábar-Villanueva E, Huicho-Espinoza W, Suazo-Peña A, Rojas-Zacarías E, Álvarez-Tolentino D. Biocomponentes y capacidad antioxidante de papas nativas como chuño y tunta. Cienc Tecnol Agropecuaria. 2023;24(1):e2958. DOI: https://doi.org/10.21930/rcta.vol24_num1_art:2958

Barragán Condori M, Aro Aro JM. Determinación del efecto de procesos de cocción en papas nativas pigmentadas. Rev Investig Altoandinas. 2017;19(1):47–52. DOI: http://dx.doi.org/10.18271/ria.2017.254

Lozano F, Chaquilla-Quilca G, Perez-Falcon LF, Teran-Hilares F, Sotelo-Mendez AH, Vilcanqui-Perez F. Morphological, nutritional characteristics, and antioxidant compounds of ten native potato varieties from Apurímac-Perú. Potato Res. 2024;67(2):603–619. DOI: https://doi.org/10.1007/s11540-023-09658-0

Kim J, Soh SY, Bae H, Nam SY. Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Appl Biol Chem. 2019;62(1):1–9. DOI: https://doi.org/10.1186/s13765-019-0422-8

Tejeda L, Mollinedo P, Aliaga-Rossel E, Peñarrieta JM. Antioxidants and nutritional composition of 52 cultivars of native Andean potatoes. Potato Res. 2020;63(4):579–588. DOI: https://doi.org/10.1007/s11540-020-09458-w

Bellumori M, Silva NAC, Vilca L, Andrenelli L, Cecchi L, Innocenti M, et al. A study on the biodiversity of pigmented Andean potatoes: nutritional profile and phenolic composition. Molecules. 2020;25(14):3169. DOI: https://doi.org/10.3390/molecules25143169

Albishi T, John JA, Al-Khalifa AS, Shahidi F. Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. J Funct Foods. 2013;5(2):590–600. DOI: https://doi.org/10.1016/j.jff.2012.11.019

Published

26-01-2026

How to Cite

Benavides Guevara, R. M., Rodriguez, I., & Oñate Perpiñán, Y. (2026). Technofunctional and bioactive properties of flours obtained from six native potato varieties (<i>Solanum tuberosum</i>) from the Cundiboyacense region. Vitae, 33(1). https://doi.org/10.17533/udea.vitae.v33n1a362612

Issue

Section

Foods: Science, Engineering and Technology