Bacillus cereus un patógeno importante en el control microbiológico de los alimentos
DOI:
https://doi.org/10.17533/udea.rfnsp.20973Palabras clave:
Bacillus cereus, enterotoxinas, toxina emética, patógeno de alimentosResumen
Bacillus cereus es una bacteria genéticamente diversa que se encuentra comúnmente en el ambiente. Contamina los alimentos afectando la salud humana, al ingerir el microorganismo y/o sus toxinas, la emética o las enterotoxinas. En Colombia son escasos los reportes de intoxicación por B. cereus y se estima que hay un gran subregistro. Por lo anterior, se recomienda aumentar la vigilancia de este patógeno y realizar estudios sobre aspectos relevantes que permitan aplicar medidas de control para disminuir las intoxicaciones por B. cereus. El objetivo de esta revisión bibliográfica es presentar información actualizada sobre B. cereus, que incluye aspectos de su biología, taxonomía, toxinas, alimentos que contamina y metodologías para detectar, prevenir y controlar este microorganismo. La información presentada es de utilidad para el público en general, especialmente personas vinculadas al sector de alimentos, inocuidad alimentaria y control de procesos.
Descargas
Citas
(1). Carlin F, Brillard J, Broussolle V, Clavel T, Duport C, Jobin M, et al. Adaptation of Bacillus cereus, an ubiquitous worldwidedistributed foodborne pathogen, to a changing environment. Food Res Int. 2010;43(7):1885-94.
(2). INS. Boletín epidemiológico para protocolo de vigilancia y control de enfermedades transmitidas por alimentos. Grupo de vigilancia y control de factores de riesgo ambiental, editor. Colombia: Instituto Nacional de Salud; 2010. p. 10.
(3). OMS-FAO. Garantía de la inocuidad y calidad de los alimentos: Directrices para el fortalecimiento de los sistemas nacionales de control de los alimentos. Depósito de documentos de la FAO, editor. Roma. 2003. p. 94.
(4). Pascual M. Enfermedades de origen alimentario. Su prevención. 2005.
(5). Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008;32(4):579-606. Epub 2008/04/22.
(6). Madigan M, Martinko J, Parker J. Biología de los microorganismos. 10ª edición ed. Washington DC, Estados Unidos: Prentice Hall; 2003.
(7). Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect. 2000;2(2):189-98. Epub 2000/04/01.
(8). Torres M, González G, Giraldo M, Olivera M, Camacho A, Leyva C. Enterotoxipatogenicidad de las cepas de Bacillus cereus implicado en un brote de enfermedad entérica letal en neonatos. Medellin: Universidad de Antioquia. Facultad Nacional de Salud Pública; 1977.
(9). INS. Informe de la vigilancia de las enfermedades transmitidas por alimentos. Grupo funcional ETA-SVCSP, editor. Colombia. 2007. p. 9.
(10). González G, González G, Puerta H, Torres Y. Intoxicación alimentaria por Bacillus cereus en el Servicio de Neonatología del Hospital General de Medellín - Colombia, 1977. Revista Facultad Nacional de Salud Pública 1974-2014 Antología. 2014;32:24-37.
(11). Suarez M, Pérez L, Murcia L, Sarmiento L, Casilimas S. Intoxicación alimentaria por consumo de carne de caimán negro (Melanosuchus niger) en el internado indígena de Nazareth, Amazonas, Abril de 1997. Biomédica. 2000;20(001):42-8.
(12). De Vos PG, G.; Jones, D.; Krieg, N.; Ludwig, W.; Rainey, F.; Schleifer, K.; Whitman, W., editor. Bergey’s Manual of Systematic Bacteriology. Second ed. Athens, GA: Springer; 2009.
(13). Logan NA. Bacillus and relatives in foodborne illness. J Appl Microbiol. 2012;112(3):417-29. Epub 2011/11/30.
(14). Gibbs P. Characteristics of spore-forming bacteria. Clive de W. Blackburn and Peter J McClure, editor. Foodborne pathogens: Hazards, risk analysis and control. Boca Raton: CRC Press LLC and Woodhead Publishing Ltd; 2002.
(15). Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett. 1997;157(2):223-8. Epub 1998/01/22.
(16). INS. Perfil de riesgo Bacillus cereus en alimentos listos para el consumo no industrializados. Unidad de evaluación de riesgos para la inocuidad de los alimentos, editor. Colombia: Ministerio de la Protección Social. Instituto Nacional de Salud; 2011.
(17). Granum P. Bacillus cereus. Fratamico P, Bhunia A, Smith J., editor. Foodborne Pathogens: Microbiology and Molecular Biology. United King: Caister Academic Press; 2005. p. 409-19.
(18). Bhunia A. Bacillus cereus and Bacillus anthracis. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. 2008. p. 135-48.
(19). Martínez J. Desarrollo de métodos rápidos para el control del Bacillus cereus en alimentos. Tesis Doctoral. España. Universidad de Valencia; 2008
(20). MacFaddin J. Biochemical Tests for Identification of Medical Bacteria: Lippincott Williams & Wilkins; 2000.
(21). Tajkarimi M. Bacillus cereus. Personal Health Record 250; 2007.
(22). Lindbäck T, Granum P. E. Detection and purification of Bacillus cereus enterotoxins. Adley CC, editor. Food-borne pathogens: Methods and protocols. Totowa: Humana Press; 2006.
(23). Økstad O, Kolstø A. Genomics of Bacillus Species. Springer, editor. Genomics of Foodborne Bacterial Pathogens New York 2011. p. 29-53.
(24). Leppla S. Bacillus anthracis toxins. Joseph Alouf MP, editor. The Comprehensive Sourcebook of Bacterial Protein Toxins. 3 ed. Burlington, USA: Elsevier; 2006. p. 323-47.
(25). J. Finlay WJ, Logan NA, Sutherland AD. Bacillus cereus emetic toxin production in relation to dissolved oxygen tension and sporulation. Food Microbiology. 2002;19(5):423-30.
(26). Dommel MK, Lucking G, Scherer S, Ehling-Schulz M. Transcriptional kinetic analyses of cereulide synthetase genes with respect to growth, sporulation and emetic toxin production in Bacillus cereus. Food Microbiol. 2011;28(2):284-90. Epub 2011/02/15.
(27). McKillip JL. Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. A Van Leeuw J MicroB. 2000;77(4):393-9. Epub 2000/08/26.
(28). INS. Perfil de riesgo Bacillus cereus en alimentos listos para consumo no industrializados. Unidad de evaluación de riesgos para la inocuidad de los alimentos, editor. Colombia: Ministerio de Protección Social. Instituto Nacional de Salud; 2011.
(29). Agaisse H, Gominet M, Okstad OA, Kolsto AB, Lereclus D. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Mol Microbiol. 1999;32(5):1043-53. Epub 1999/06/11.
(30). Raddadi N, Rizzi A, Brusetti L, Borin S, Tamagnini I, Daffonchio D. Bacillus. Liu D, editor. Molecular Detection of Foodborne Pathogens. Boca Raton, FL: Taylor & Francis Group; 2010. p. 129-44.
(31). Lindback T, Fagerlund A, Rodland MS, Granum PE. Characterization of the Bacillus cereus Nhe enterotoxin. Microbiology. 2004;150 (Pt 12):3959-67. Epub 2004/12/08.
(32). Todar K. Bacillus cereus Food Poisoning. In: Todar K, editor. Todar’s Online Textbook of Bacteriology. 2008.
(33). Guinebretiere MH, Fagerlund A, Granum PE, Nguyen-The C. Rapid discrimination of cytK-1 and cytK-2 genes in Bacillus cereus strains by a novel duplex PCR system. FEMS Microbiol Lett. 2006;259(1):74-80. Epub 2006/05/11.
(34). Frankham R, Ballou, J., Briscoe, D. Introduction to Conservation Genetics. United Kindom: Cambridge University Press; 2010.
(35). Guinebretiere MH, Thompson FL, Sorokin A, Normand P, Dawyndt P, Ehling-Schulz M, et al. Ecological diversification in the Bacillus cereus Group. Environ Microbiol. 2008;10(4):851- 65. Epub 2007/11/27.
(36). Kim JB, Park JS, Kim MS, Hong SC, Park JH, Oh DH. Genetic diversity of emetic toxin producing Bacillus cereus Korean strains. Int J Food Microbiol. 2011;150(1):66-72. Epub 2011/08/09.
(37). Samapundo S, Heyndrickx M, Xhaferi R, Devlieghere F. Incidence, diversity and toxin gene characteristics of Bacillus cereus group strains isolated from food products marketed in Belgium. Int J Food Microbiol. 2011;150(1):34-41. Epub 2011/08/16.
(38). Guinebretiere M, Velge P, Couvert O, Carlin F, Debuyser M, C. N-T. Ability of Bacillus cereus Group Strains To Cause Food Poisoning Varies According to Phylogenetic Affiliation (Groups I to VII) Rather than Species Affiliation. J Clin Microbiol. 2010;48(9):3388–91.
(39). Chaves JQ, Pires ES, Vivoni AM. Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades. Int J Food Microbiol. 2011;147(1):12-6. Epub 2011/03/29.
(40). Kim JB, Kim JM, Kim CH, Seo KS, Park YB, Choi NJ, et al. Emetic toxin producing Bacillus cereus Korean isolates contain genes encoding diarrheal-related enterotoxins. Int J Food Microbiol. 2010;144(1):182-6. Epub 2010/09/28.
(41). Kim B, Bang J, Kim H, Kim Y, Kim B-s, Beuchat LR, et al. Bacillus cereus and Bacillus thuringiensis spores in Korean rice: Prevalence and toxin production as affected by production area and degree of milling. Food Microbiol. 2014;42(0):89-94.
(42). Pasvolsky R, Zakin V, Ostrova I, Shemesh M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int J Food Microbiol. 2014;181:19-27. Epub 2014/05/08.
(43). Red Nacional de Vigilancia epidemiológica. Brotes de enfermedades transmitidas por alimentos: Número de brotes notificados según agente causal y año España. 1994-2003. Centro Nacional de Epidemiología, editor. España 2005.
(44). Agencia Catalana de Seguridad Alimentaria. Bacillus cereus. España: Departament de Salut; 2011.
(45). Instituto de San Carlos III. Boletín epidemiológico semanal en red. Ministerio de Economía y Competitividad, editor. España. 2013.
(46). Savio M. La Situación Epidemiológica de las Enfermedades Transmisibles en el Uruguay. Seminario “Las enfermedades Transmisibles en el Uruguay”. Uruguay: Instituto de Higiene; 2001.
(47). Blanco W, Arias M, Pérez C, Rodríguez C, Chaves C. Detección de Bacillus cereus toxigénicos en productos lácteos con especias y leches deshidratadas colectadas en Costa Rica. Arch Latinoam Nutr. 2009;59(4):402-6.
(48). López AC, Minnaard J, Pérez PF, Alippi AM. A case of intoxication due to a highly cytotoxic Bacillus cereus strain isolated from cooked chicken. Food Microbiol. 2015;46(0):195-9.
(49). Kopper G, Calderón G, Schneider S, Domínguez W, Gutiérrez G. Enfermedades transmitidas por alimentos y su impacto socioeconómico: Estudios de caso en Costa Rica, El Salvador, Guatemala, Honduras y Nicaragua. Informe técnico sobre Ingeniería agrícola y alimentaria, FAO, editor. FAO; 2009.
(50). Padilla J. Validación secundaria del método de recuento en placa en superficie de Bacillus cereus y Staphylococcus aureus en muestras de alimentos en un laboratorio de referencia. Bogotá D.C.: Universidad Javeriana; 2007.
(51). ISO. ISO 7932:2004. Microbiology of food and animal feeding stuffs -- Horizontal method for the enumeration of presumptive Bacillus cereus -- Colony-count technique at 30 degrees C. International Organization for Standardization; 2012. p. 13.
(52). ICONTEC. NTC:4679. Metodo horizontal para el recuento de Bacillus cereus Técnica de recuento de colonias. Colombia: ICONTEC. Instituto Colombiano de Normas Técnicas y Certificación. 2006.
(53). Sarrı́ as JA, Valero M, Salmerón MC. Enumeration, isolation and characterization of Bacillus cereus strains from Spanish raw rice. Food Microbiol. 2002;19(6):589-95.
(54). Choma C, Guinebretiere MH, Carlin F, Schmitt P, Velge P, Granum PE, et al. Prevalence, characterization and growth of Bacillus cereus in commercial cooked chilled foods containing vegetables. J Appl Microbiol. 2000;88(4):617-25. Epub 2000/05/03.
(55). Peng H, Ford V, Frampton EW, Restaino L, Shelef LA, Spitz H. Isolation and enumeration of Bacillus cereus from foods on a novel chromogenic plating medium. Food Microbiol. 2001;18(3):231-8.
(56). FDA. Bad Bug Book: Foodborne Pathogenic Microorganisms and Natural Toxins Handbook Bacillus cereus and other Bacillus spp. Deparment of Health and Human Services, editor. U.S: FDA. Food and Drug Administration. 2009.
(57). Fricker M, Reissbrodt R, Ehling-Schulz M. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int J Food Microbiol. 2008;121(1):27-34.
(58). Wehrle E, Didier A, Moravek M, Dietrich R, Märtlbauer E. Detection of Bacillus cereus with enteropathogenic potential by multiplex real-time PCR based on SYBR green I. Mol Cell Probe. 2010;24(3):124-30.
(59). Ankolekar C, Rahmati T, Labbe RG. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int J Food Microbiol. 2009;128(3):460-6.
(60). Kim JB, Kim JM, Park YB, Han JA, Lee SH, Kwak HS, et al. Evaluation of various PCR assays for the detection of emetic toxin producing Bacillus cereus. J Microbiol Biotechnol. 2010;20(7):1107-13. Epub 2010/07/30.
(61). Wiwat C, Boonchaisuk R. Development of a DNA-Probe for Detection of Enterotoxic Bacillus cereus Isolated from Foods in Thailand. J Pharm Sci. 2009;36:22-33.
(62). Wehrle E, Moravek M, Dietrich R, Bürk C, Didier A, Märtlbauer E. Comparison of multiplex PCR, enzyme immunoassay and cell culture methods for the detection of enterotoxinogenic Bacillus cereus. J Microbiol Meth. 2009;78(3):265-70.
(63). Azza A, Abou Z. Molecular Characterization and Enterotoxin Genes Typing of Local Strains of Bacillus cereus. Aust J Basic Appl Sci. 2009;3(1):160-6.
(64). Corona A, Fois M, Mazzette R, De Santis E. A New Multiplex PCR for the Detection of hbl Genes in Strains of the ‘Bacillus cereus Group’. Veterinary Research Communications. 2003;27(1):679-82.
(65). Ombui J, Gitahi J, Gicheru M. Direct detection of Bacillus cereus enterotoxin genes in food by multiplex Polymerase Chain Reaction. International Journal of Integrative Biology. 2008;2(3):172-81.
(66). Ceuppens S, Boon N, Rajkovic A, Heyndrickx M, Van de Wiele T, Uyttendaele M. Quantification methods for Bacillus cereus vegetative cells and spores in the gastrointestinal environment. J Microbiol Meth. 2010;83(2):202-10.
(67). Fernández-No IC, Guarddon M, Böhme K, Cepeda A, Calo-Mata P, Barros-Velázquez J. Detection and quantification of spoilage and pathogenic Bacillus cereus, Bacillus subtilis and Bacillus licheniformis by real-time PCR. Food Microbiol. 2011;28(3):605-10.
(68). Martínez-Blanch JF, Sánchez G, Garay E, Aznar R. Development of a real-time PCR assay for detection and quantification of enterotoxigenic members of Bacillus cereus group in food samples. Int J Food Microbiol. 2009;135(1):15-21.
(69). Dzieciol M, Fricker M, Wagner M, Hein I, Ehling-Schulz M. A novel diagnostic real-time PCR assay for quantification and differentiation of emetic and non-emetic Bacillus cereus. Food Control. 2013;32(1):176-85.
(70). Manzano M, Cocolin L, Cantoni C, Comi G. Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. Int J Food Microbiol. 2003;81(3):249-54.
(71). Oh M-H, Ham J-S, Cox JM. Diversity and toxigenicity among members of the Bacillus cereus group. Int J Food Microbiol. 2012;152(1–2):1-8.
(72). Krause N, Moravek M, Dietrich R, Wehrle E, Slaghuis J, Märtlbauer E. Performance characteristics of the Duopath® Cereus Enterotoxins assay for rapid detection of enterotoxinogenic Bacillus cereus strains. Int J Food Microbiol. 2010;144(2):322-6.
(73). Hormazábal V, Østensvik Ø, O’Sullivan K, Granum PE. Quantification of Bacillus cereus Emetic Toxin (Cereulide) in Figs Using LC/MS. Journal of Liquid Chromatography & Related Technologies. 2004;27(16):2531-8.
(74). Delbrassinne L, Andjelkovic M, Rajkovic A, Dubois P, Nguessan E, Mahillon J, et al. Determination of Bacillus cereus Emetic Toxin in Food Products by Means of LC–MS². Food Anal Methods. 2012;5(5):969-79.
(75). Häggblom M, Apetroaie C, Andersson M, M. S-S. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl Environ Microbiol. 2002;68(5):2479-83.
(76). Ueda S, Kuwubara Y. Rapid identification of Emetic Bacillus cereus by immunocromatography. Biocontrol Sci. 2011 16(1):41-5.
(77). Manzo A, Natividad D, Quiñones E, C. V. Bacillus cereus: Peligro bajo el tenedor. Revista Digital Universitaria Universidad Autónoma de México. 2005;6(4).
(78). Noriega L, Gueimonde M, Alonso L, de los Reyes-Gavilán CG. Inhibition of Bacillus cereus growth in carbonated fermented bifidus milk. Food Microbiol. 2003;20(5):519-26.
(79). Røssland E, Andersen G, Langsrud T, Sørhaug T. Inhibition of Bacillus cereus by strains of Lactobacillus and Lactococcus in milk. Int J Food Microbiol. 2003;89:205-12.
(80). Røssland E, Langsrud T, Granum PE, Sørhaug T. Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk. Int J Food Microbiol. 2005;98(2):193-200.
(81). Yang Y, Tao W-Y, Liu Y-J, Zhu F. Inhibition of Bacillus cereus by lactic acid bacteria starter cultures in rice fermentation. Food Control. 2008;19(2):159-61.
(82). Van Opstal I, Bagamboula CF, Vanmuysen SCM, Wuytack EY, Michiels CW. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Int J Food Microbiol. 2004;92(2):227-34.
(83). Abbas AA, Planchon S, Jobin M, Schmitt P. Absence of oxygen affects the capacity to sporulate and the spore properties of Bacillus cereus. Food Microbiol. 2014;42:122-31. Epub 2014/06/16.
(84). Nam H, Seo H-S, Bang J, Kim H, Beuchat LR, Ryu J-H. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel. Int J Food Microbiol. 2014;188(0):122-7.
(85). Cobo Molinos A, Abriouel H, Lucas López R, Ben Omar N, Valdivia E, Gálvez A. Inhibition of Bacillus cereus and Bacillus weihenstephanensis in raw vegetables by application of washing solutions containing enterocin AS-48 alone and in combination with other antimicrobials. Food Microbiol. 2008;25(6):762-70.
(86). Grande MJ, Lucas R, Abriouel H, Valdivia E, Omar NB, Maqueda M, et al. Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int J Food Microbiol. 2006;106(2):185-94.
(87). Mellegård H, From C, Christensen BE, Granum PE. Inhibition of Bacillus cereus spore outgrowth and multiplication by chitosan. International journal of food microbiology. 2011;149(3):218-25.
(88). Fernandes JC, Eaton P, Gomes AM, Pintado ME, Xavier Malcata F. Study of the antibacterial effects of chitosans on Bacillus cereus (and its spores) by atomic force microscopy imaging and nanoindentation. Ultramicroscopy. 2009;109(8):854-60.
(89). Lei J, Yang L, Zhan Y, Wang Y, Ye T, Li Y, et al. Plasma treated polyethylene terephthalate/polypropylene films assembled with chitosan and various preservatives for antimicrobial food packaging. Colloids and Surfaces B: Biointerfaces. 2014;114(0):60-6.
(90). Bandla S, Choudhary R, Watson DG, Haddock J. UV-C treatment of soymilk in coiled tube UV reactors for inactivation of Escherichia coli W1485 and Bacillus cereus endospores. LWT - Food Sci Technol. 2012;46(1):71-6.
(91). Aguirre JS, Ordóñez JA, García de Fernando GD. A comparison of the effects of E-beam irradiation and heat treatment on the variability of Bacillus cereus inactivation and lag phase duration of surviving cells. Int J Food Microbiol. 2012;153(3):444-52.
(92). Ayari S, Dussault D, Hayouni EA, Hamdi M, Lacroix M. Radiation tolerance of Bacillus cereus pre-treated with carvacrol alone or in combination with nisin after exposure to single and multiple sublethal radiation treatment. Food Control. 2013;32(2):693-701.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
El autor o los autores conserva(n) los derechos morales y cede(n) los derechos patrimoniales que corresponderán a la Universidad de Antioquia, para publicarlo, distribuir copias electrónicas, incluirlas en servicios de indización, directorios o bases de datos nacionales e internacionales en Acceso Abierto, bajo la licencia Creative Commons Atribución-No Comercial-Compartir Igual 4.0 Internacional Comercial (CC BY-NC-SA) la cual permite a otros distribuir, remezclar, retocar y crear a partir de la obra de modo no comercial, siempre y cuando se dé crédito respectivo y licencien las nuevas creaciones bajo las mismas condiciones.