Resistencia bacteriana en ambientes acuáticos: origen e implicaciones para la salud pública

Autores/as

DOI:

https://doi.org/10.17533/udea.rfnsp.e351453

Palabras clave:

antibióticos, bacterias resistentes a antibióticos, contaminación del agua, epidemiología basada en aguas residuales, resistencia antimicrobiana, salud pública

Resumen

El alarmante incremento de la resistencia bacteriana a los antibióticos a nivel global ha dilucidado otras fuentes diferentes al hospital y la comunidad, donde el agua ha cobrado gran importancia. El ambiente acuático constituye el hábitat natural de un gran número de microorganismos, incluyendo bacterias resistentes a antibióticos, así mismo, se considera uno de los principales receptores de antimicrobianos, bacterias resistentes y genes de resistencia a antibióticos (ARGs) provenientes de las actividades humanas. En esta revisión se brinda una descripción global del papel de los ambientes acuáticos en el problema de la resistencia bacteriana y el potencial impacto en la salud humana. Se describen las principales fuentes de contaminación y las principales metodologías empleadas para su análisis, además se abordan estudios que plantean el posible impacto de la situación para la salud pública, tema recientemente explorado y de conocimiento aún incipiente. Finalmente, como conclusión, se establece la necesidad de abordar la problemática de la resistencia bacteriana desde la perspectiva de una sola salud, donde a la vigilancia tradicional, enfocada a nivel humano y veterinario, se articule a la vigilancia del ambiente acuático, principalmente la vigilancia epidemiológica basada en aguas residuales.

|Resumen
= 939 veces | PDF
= 596 veces| | PDF INGLÉS
= 54 veces| | HTML
= 34 veces|

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Judy Natalia Jimenez Quiceno, Escuela de Microbiología, Universidad de Antioquia

Bacterióloga, MSc, Doctorado en Ciencias Básicas Biomédicas. Profesora titular. Línea de Epidemiología Molecular y Resistencia Bacteriana, Grupo de Microbiología Básica y Aplicada, Universidad de Antioquia. Medellín, Colombia.

Erika Andrea Rodríguez, Universidad de Antioquia

Microbióloga, MSc, Doctorado en Biología. Profesora cátedra. Universidad de Antioquia, Colombia. Línea de Epidemiología Molecular y Resistencia Bacteriana, Grupo de Microbiología Básica y Aplicada, Universidad de Antioquia. Medellín, Colombia

Citas

. Murray CJ, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-55. doi: https://doi.org/10.1016/S0140-6736(21)02724-0

. Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13(12):1057-98. doi: https://doi.org/10.1016/S1473-3099(13)70318-9

. Vanegas Múnera J, Jiménez Quiceno J. Resistencia antimicrobiana en el siglo xxi: ¿hacia una era postantibiótica? Rev Fac Nac Salud Pública. 2019;38(1):1-6. doi: https://doi.org/10.17533/udea.rfnsp.v38n1e337759

. Marshall BM, Levy SB. Food animals and antimicrobials: Impacts on human health. Clin Microbiol Rev. 2011;24(4):718-33. doi: https://doi.org/10.1128/CMR.00002-11

. Martinez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009;157(11):2893-902. doi: https://doi.org/10.1016/j.envpol.2009.05.051

. Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: Searching the links with the human microbiome. fems Microbiol Rev. 2014;38(4):761-78. doi: https://doi.org/10.1111/1574-6976.12062

. Almakki A, Jumas-Bilak E, Marchandin H, Licznar-Fajardo P. Antibiotic resistance in urban runoff. Sci Total Environ. 2019;667:64-76. doi: https://doi.org/10.1016/j.scitotenv.2019.02.183

. Guo J, Li J, Chen H, et al. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. Water Res. 2017;123:468-78. doi: https://doi.org/10.1016/j.watres.2017.07.002

. Szczepanowski R, Linke B, Krahn I, et al. Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology. 2009;155(7):2306-19. doi: https://doi.org/10.1099/mic.0.028233-0

. Marti E, Variatza E, Balcazar JL. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 2014;22(1):36-41. doi: https://doi.org/10.1016/j.tim.2013.11.001

. Li D, Yu T, Zhang Y, et al. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol. 2010;76(11):3444-51. doi: https://doi.org/10.1128/AEM.02964-09

. Kristiansson E, Fick J, Janzon A, et al. Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS One. 2011;6(2):e17038. doi: https://doi.org/10.1371/journal.pone.0017038

. Zheng W, Huyan J, Tian Z, et al. Clinical class 1 integron-integrase gene – A promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ Int. 2020;135:105372. doi: https://doi.org/10.1016/j.envint.2019.105372

. Maganha de Almeida Kumlien AC, Borrego CM, Balcázar JL. Antimicrobial resistance and bacteriophages: An overlooked intersection in water disinfection. Trends Microbiol. 2021;29(6):517-27. doi: https://doi.org/10.1016/j.tim.2020.12.011

. Poirel L, Rodriguez-Martinez JM, Mammeri H, et al. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49(8):3523-5. doi: https://doi.org/10.1128/AAC.49.8.3523-3525.2005

. Poirel L, Liard A, Rodriguez-Martinez JM, Nordmann P. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother. 2005;1118-21. doi: https://doi.org/10.1093/jac/dki371

. Poirel L, Potron A, Nordmann P. oxa-48-like carbapenemases: The phantom menace. J Antimicrob Chemother. 2012;67(7):1597-606. doi: https://doi.org/10.1093/jac/dks121

. Gullberg E, Albrecht LM, Karlsson C, et al. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio. 2014;5(5):e01918-14. doi: https://doi.org/10.1128/mBio.01918-14

. Gullberg E, Cao S, Berg OG, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7):e1002158. doi: https://doi.org/10.1371/journal.ppat.1002158

. Stanton IC, Murray AK, Zhang L, et al. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun Biol. 2020;3(1):467. doi: https://doi.org/10.1038/s42003-020-01176-w

. Klümper U, Recker M, Zhang L, et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. isme J. 2019;13(12):2927-37. doi: https://doi.org/10.1038/s41396-019-0483-z

. Kraupner N, Ebmeyer S, Bengtsson-Palme J, et al. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. Environ Int. 2018;116:255-68. doi: https://doi.org/10.1016/j.envint.2018.04.029

] Lundström S V., Östman M, Bengtsson-Palme J, et al. Minimal selective concentrations of tetracycline in complex aquatic bacterial biofilms. Sci Total Environ. 2016;553:587-95. doi: https://doi.org/10.1016/j.scitotenv.2016.02.103

. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12(7):465-78. doi: https://doi.org/10.1038/nrmicro3270

. Zhang S, Huang J, Zhao Z, et al. Hospital wastewater as a reservoir for antibiotic resistance genes: A meta-analysis. Front Public Heal. 2020;8:574968. doi: https://doi.org/10.3389/fpubh.2020.574968

. Bouki C, Venieri D, Diamadopoulos E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol Environ Saf. 2013;91:1-9. doi: https://doi.org/10.1016/j.ecoenv.2013.01.016

Rowe WPM, Baker-Austin C, Verner-Jeffreys DW, et al. Overexpression of antibiotic resistance genes in hospital effluents over time. J Antimicrob Chemother. 2017;72(6):1617-23. doi: https://doi.org/10.1093/jac/dkx017

. Harris S, Morris C, Morris D, et al. The effect of hospital effluent on antimicrobial resistant E. coli within a municipal wastewater system. Environ Sci Process Impacts. 2013;15(3):617. doi: https://doi.org/10.1039/C2EM30934C

. Van Boeckel TP, Gandra S, Ashok A, et al. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014;14(8):742-50. doi: https://doi.org/10.1016/S1473-3099(14)70780-7

. Hong P-Y, Al-Jassim N, Ansari M, Mackie R. Environmental and public health implications of water reuse: Antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes. Antibiotics. 2013;2(3):367-99. doi: https://doi.org/10.3390/antibiotics2030367

. Korzeniewska E, Harnisz M. Extended-spectrum beta-lactamase (esbl)-positive Enterobacteriaceae in municipal sewage and their emission to the environment. J Environ Manage. 2013;128:904-11. doi: https://doi.org/10.1016/j.jenvman.2013.06.051

. Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ. 2013;447:345-60. doi: https://doi.org/10.1016/j.scitotenv.2013.01.032

. Novo A, André S, Viana P, et al. Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res. 2013;47(5):1875-87. doi: https://doi.org/10.1016/j.watres.2013.01.010

. Šimatović A, Udiković-Kolić N. Antibiotic resistance in pharmaceutical industry effluents and effluent-Impacted environments. In: Manaia C, Donner E, Vaz-Moreira I, Hong P, editors. Antibiotic resistance in the environment. The handbook of environmental chemistry, vol 91. Cham: Springer. pp. 101-22. doi: https://doi.org/10.1007/698_2019_389

. Grujić S, Vasiljević T, Laušević M. Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. J Chromatogr A. 2009;1216(25):4989-5000. doi: https://doi.org/10.1016/j.chroma.2009.04.059

. Maron DF, Smith TJS, Nachman KE. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global Health. 2013;9:48. doi: https://doi.org/10.1186/1744-8603-9-48

. Tiseo K, Huber L, Gilbert M, et al. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics. 2020;9(12):918. doi: https://doi.org/10.3390/antibiotics9120918

. Dolliver H, Gupta S. Antibiotic losses in leaching and surface runoff from manure‐amended agricultural land. J Environ Qual. 2008;37(3):1227-37. doi: https://doi.org/10.2134/jeq2007.0392

. Cabello FC, Godfrey HP, Tomova A, et al. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917-42. doi: https://doi.org/10.1111/1462-2920.12134

. Pavón A, Riquelme D, Jaña V, et al. The high risk of bivalve farming in coastal areas with heavy metal pollution and antibiotic-resistant bacteria: A Chilean perspective. Front Cell Infect Microbiol. 2022;12:867446. doi: https://doi.org/10.3389/fcimb.2022.867446

. McManus PS. Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr Opin Microbiol. 2014;19:76-82. doi: https://doi.org/10.1016/j.mib.2014.05.013

. Hernandes F, Henriques L, Pilz R, et al. Antibiotic resistance in aquatic environments of Rio de Janeiro, Brazil. In: Ahmad I, Ahmad Dar M, editors. Perspectives in water pollution. Croatia: InTech; 2013. doi: https://doi.org/10.5772/54638

. Galler H, Feierl G, Petternel C, et al. kpc-2 and oxa-48 carbapenemase-harbouring Enterobacteriaceae detected in an Austrian wastewater treatment plant. Clin Microbiol Infect. 2014;20(2):O132-4. doi: https://doi.org/10.1111/1469-0691.12336

. Rodríguez EA, Aristizábal-Hoyos AM, Morales-Zapata S, et al. High frequency of gram-negative bacilli harboring blaKPC-2 in the different stages of wastewater treatment plant: A successful mechanism of resistance to carbapenems outside the hospital settings. J Environ Manage. 2020;271:111046. doi: https://doi.org/10.1016/j.jenvman.2020.111046

. Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015;69:234-42. doi: https://doi.org/10.1016/j.watres.2014.11.021

. Zhang X, Lü X, Zong Z. Enterobacteriaceae producing the kpc-2 carbapenemase from hospital sewage. Diagn Microbiol Infect Dis. 2012;73(2):204-6. doi: https://doi.org/10.1016/j.diagmicrobio.2012.02.007

. Montezzi LF, Campana EH, Corrêa LL, et al. Occurrence of carbapenemase-producing bacteria in coastal recreational waters. Int J Antimicrob Agents. 2015;45(2):174-7. doi: https://doi.org/10.1016/j.ijantimicag.2014.10.016

. Mills MC, Lee J. The threat of carbapenem-resistant bacteria in the environment: Evidence of widespread contamination of reservoirs at a global scale. Environ Pollut. 2019;255:113143. doi: https://doi.org/10.1016/j.envpol.2019.113143

. Xiong W, Sun Y, Ding X, et al. Antibiotic resistance genes occurrence and bacterial community composition in the Liuxi River. Front Environ Sci. 2014;2:61. doi: https://doi.org/10.3389/fenvs.2014.00061

. Rodríguez EA, Ramirez D, Balcázar JL, Jiménez JN. Metagenomic analysis of urban wastewater resistome and mobilome: A support for antimicrobial resistance surveillance in an endemic country. Environ Pollut. 2021;276:116736. doi: https://doi.org/10.1016/j.envpol.2021.116736

. Rodríguez EA, Garzón LM, Gómez ID, Jiménez JN. Multidrug resistance and presence of diversity of resistance profiles in carbapenem-resistant Gram-negative bacilli throughout a wastewater treatment plant in Colombia. J Glob Antimicrob Resist. 2020;22:358-66. doi: https://doi.org/10.1016/j.jgar.2020.02.033

. Moreno-Switt AI, Rivera D, Caipo ML, et al. Antimicrobial resistance in water in Latin America and the Caribbean: Available research and gaps. Front Vet Sci [internet] 2020 [citado 2023 abr. 17]; 7:546. Disponible en: https://www.frontiersin.org/articles/10.3389/fvets.2020.00546/full

. Aristizábal-Hoyos AM, Rodríguez EA, Arias L, Jiménez JN. High clonal diversity of multidrug-resistant and extended spectrum beta-lactamase-producing Escherichia coli in a wastewater treatment plant. J Environ Manage. 2019;245:37-47. doi: https://doi.org/10.1016/j.jenvman.2019.05.073

. Aristizabal-Hoyos AM, Rodríguez EA, Torres-Palma RA, Jiménez JN. Concern levels of beta-lactamase-producing Gram-negative bacilli in hospital wastewater: Hotspot of antimicrobial resistance in Latin-America. Diagn Microbiol Infect Dis. 2023;105(1):115819. doi: https://doi.org/10.1016/j.diagmicrobio.2022.115819

. Rodríguez EA, Pino NJ, Jiménez JN. Climatological and epidemiological conditions are important factors related to the abundance of blaKPC and other antibiotic resistance genes (args) in wastewater treatment plants and their effluents, in an endemic country. Front Cell Infect Microbiol. 2021;11:686472. doi: https://doi.org/10.3389/fcimb.2021.686472

. Dorado-García A, Smid JH, Van Pelt W, et al. Molecular relatedness of esbl/AmpC-producing Escherichia coli from humans, animals, food and the environment: A pooled analysis. J Antimicrob Chemother. 2018;73(2):339-47. doi: https://doi.org/10.1093/jac/dkx397

. Coleman BL, Salvadori MI, Mcgeer AJ, et al. The role of drinking water in the transmission of antimicrobial-resistant E. coli. Epidemiol Infect. 2012;140(4):633-42. doi: https://doi.org/10.1017/S0950268811001038

. Leonard AFC, Zhang L, Balfour AJ, et al. Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int. 2015;82:92-100. doi: https://doi.org/10.1016/j.envint.2015.02.013

. Leonard AFC, Zhang L, Balfour AJ, et al. Exposure to and colonisation by antibiotic-resistant E. coli in uk coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ Int. 2018;114:326-[33. doi: https://doi.org/10.1016/j.envint.2017.11.003

. Leonard AFC, Yin XL, Zhang T, et al. A coliform-targeted metagenomic method facilitating human exposure estimates to Escherichia coli-borne antibiotic resistance genes. fems Microbiol Ecol. 2018;94(3). doi: https://doi.org/10.1093/femsec/fiy024

. Mughini-Gras L, Dorado-García A, Van Duijkeren E, et al. Attributable sources of community-acquired carriage of Escherichia coli containing β-lactam antibiotic resistance genes: A population-based modelling study. Lancet Planet Heal. 2019;3(8):E357-E369. doi: https://doi.org/10.1016/S2542-5196(19)30130-5

. Søraas A, Sundsfjord A, Sandven I, et al. Risk Factors for community-acquired urinary tract infections caused by esbl-producing Enterobacteriaceae –A case–control study in a low prevalence country. PLoS One. 2013;8(7):e69581. https://doi.org/10.1371/journal.pone.0069581

. Jørgensen SB, Søraas A V, Arnesen LS, et al. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS One. 2017;12(10):e0186576. https://doi.org/10.1371/journal.pone.0186576

. Laurens C, Jean-Pierre H, Licznar-Fajardo P, et al. Transmission of imi-2 carbapenemase-producing Enterobacteriaceae from river water to human. J Glob Antimicrob Resist. 2018;15:88-92. doi: https://doi.org/10.1016/j.jgar.2018.06.022

. Mahon BM, Brehony C, McGrath E, et al. Indistinguishable ndm-producing Escherichia coli isolated from recreational waters, sewage, and a clinical specimen in Ireland, 2016 to 2017. Eurosurveillance. 2017;22(15). doi: https://doi.org/10.2807/1560-7917.ES.2017.22.15.30513

. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of ndm-1 positive bacteria in the New Delhi environment and its implications for human health: An environmental point prevalence study. Lancet Infect Dis. 2011;11(5):355-62. doi: https://doi.org/10.1016/S1473-3099(11)70059-7

. Runcharoen C, Moradigaravand D, Blane B, et al. Whole genome sequencing reveals high-resolution epidemiological links between clinical and environmental Klebsiella pneumoniae. Genome Med. 2017;9(1):6. doi: https://doi.org/10.1186/s13073-017-0397-1

. Wang Y, Zhang R, Li J, et al. Comprehensive resistome analysis reveals the prevalence of ndm and mcr-1 in Chinese poultry production. Nat Microbiol. 2017;2(4):16260. doi: https://doi.org/10.1038/nmicrobiol.2016.260

. Lepuschitz S, Schill S, Stoeger A, et al. Whole genome sequencing reveals resemblance between esbl-producing and carbapenem resistant Klebsiella pneumoniae isolates from Austrian rivers and clinical isolates from hospitals. Sci Total Environ. 2019;662:227-35. doi: https://doi.org/10.1016/j.scitotenv.2019.01.179

. Diab M, Hamze M, Bonnet R, et al. Extended-spectrum beta-lactamase (esbl)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet Microbiol. 2018;217:97-103. doi: https://doi.org/10.1016/j.vetmic.2018.03.007

. Hua M, Huang W, Chen A, et al. Comparison of antimicrobial resistance detected in environmental and clinical isolates from historical data for the us. Biomed Res Int. 2020;2020:4254530. doi: https://doi.org/10.1155/2020/4254530

. Tran NH, Chen H, Reinhard M, et al. Occurrence and removal of multiple classes of antibiotics and antimicrobial agents in biological wastewater treatment processes. Water Res. 2016;104:461-472. doi: https://doi.org/10.1016/j.watres.2016.08.040

. Mao D, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015;85:458-66. doi: https://doi.org/10.1016/j.watres.2015.09.010

. Martínez JL, Coque TM, Baquero F. Prioritizing risks of antibiotic resistance genes in all metagenomes. Nat Rev Microbiol. 2015;13:396. https://doi.org/10.1038/nrmicro3399-c2

. Devarajan N, Laffite A, Graham ND, et al. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe. Environ Sci Technol. 2015;49(11):6528-37. doi: https://doi.org/10.1021/acs.est.5b01031

. Cerqueira F, Matamoros V, Bayona JM, et al. Antibiotic resistance gene distribution in agricultural fields and crops. A soil-to-food analysis. Environ Res. 2019;177:108608. DOI: https://doi.org/10.1016/j.envres.2019.108608

. Yang L, Liu W, Zhu D, et al. Application of biosolids drives the diversity of antibiotic resistance genes in soil and lettuce at harvest. Soil Biol Biochem. 2018;122:131-40. DOI: https://doi.org/10.1016/j.soilbio.2018.04.017

. Sato T, Qadir M, Yamamoto S, et al. Global, regional, and country level need for data on wastewater generation, treatment, and use. Agric Water Manag. 2013;130:1-13. doi: https://doi.org/10.1016/j.agwat.2013.08.007

. World Economic Forum. Antimicrobial resistance and water: The risks and costs for economies and societies. Switzerland [internet]; 2021 [citado 2023 abr. 17]. Disponible en: https://www.weforum.org/reports/the-costs-and-risks-of-amr-water-pollution/

. Collignon P, Beggs JJ, Walsh TR, et al. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet Heal. 2018;2(9):e398-405. doi: https://doi.org/10.1016/S2542-5196(18)30186-4

.Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, Alpuche-Aranda CM. Antimicrobial resistance: One Health approach. Vet World 2022;15:743–9. doi: https://doi.org/10.14202/vetworld.2022.743-749.

. Sims N, Kasprzyk-Hordern B. Future perspectives of wastewater-based epidemiology: Monitoring infectious disease spread and resistance to the community level. Environ Int. 2020;139:105689. doi: https://doi.org/10.1016/j.envint.2020.105689

. Choi PM, Tscharke BJ, Donner E, et al. Wastewater-based epidemiology biomarkers: Past, present and future. TrAC Trends Anal Chem. 2018;105:453-69. doi: https://doi.org/10.1016/j.trac.2018.06.004

. Reinthaler FF, Galler H, Feierl G, et al. Resistance patterns of Escherichia coli isolated from sewage sludge in comparison with those isolated from human patients in 2000 and 2009. J Water Health. 2013;11(1):13-20. doi: https://doi.org/10.2166/wh.2012.207

. Majlander J, Anttila V-J, Nurmi W, et al. Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: Focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. J Hosp Infect. 2021;117:157-64. doi: https://doi.org/10.1016/j.jhin.2021.09.008

. Flach C-F, Hutinel M, Razavi M, Åhrén C, Larsson DGJ. Monitoring of hospital sewage shows both promise and limitations as an early-warning system for carbapenemase-producing Enterobacterales in a low-prevalence setting. Water Res. 2021;200:117261. doi: https://doi.org/10.1016/j.watres.2021.117261

. Teban-Man A, Szekeres E, Fang P, et al. Municipal wastewaters carry important carbapenemase genes independent of hospital input and can mirror clinical resistance patterns. Microbiol Spectr. 2022;10(2):e0271121. doi: https://doi.org/10.1128/spectrum.02711-21

. Chagas TPG, Seki LM, da Silva DM, Asensi MD. Occurrence of kpc-2-producing Klebsiella pneumoniae strains in hospital wastewater. J Hosp Infect. 2011;77(3):281. doi: https://doi.org/10.1016/j.jhin.2010.10.008

. Mtetwa HN, Amoah ID, Kumari S, et al. Wastewater-based surveillance of antibiotic resistance genes associated with tuberculosis treatment regimen in KwaZulu Natal, South Africa. Antibiotics. 2021;10(11):1362. doi: https://doi.org/10.3390/antibiotics10111362

. Han S, Wang Z, Huang H, et al. Estimating antibiotics use in major cities in China through wastewater-based epidemiology. Sci Total Environ. 2022;826:154116. doi: https://doi.org/10.1016/j.scitotenv.2022.154116

. Hendriksen RS, Munk P, Njage P, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019; 10:1124. doi: https://doi.org/10.1038/s41467-019-08853-3

. Caucci S, Karkman A, Cacace D, et al. Seasonality of antibiotic prescriptions for outpatients and resistance genes in sewers and wastewater treatment plant outflow. fems Microbiol Ecol. 2016;92(5):fiw060. doi: https://doi.org/10.1093/femsec/fiw060

. Spänig S, Eick L, Nuy JK, et al. A multi-omics study on quantifying antimicrobial resistance in European freshwater lakes. Environ Int. 2021;157:106821. doi: https://doi.org/10.1016/j.envint.2021.106821

Publicado

2023-07-10

Cómo citar

1.
Jimenez Quiceno JN, Rodríguez EA. Resistencia bacteriana en ambientes acuáticos: origen e implicaciones para la salud pública. Rev. Fac. Nac. Salud Pública [Internet]. 10 de julio de 2023 [citado 22 de enero de 2025];41(3):e351453. Disponible en: https://revistas.udea.edu.co/index.php/fnsp/article/view/351453

Número

Sección

Condiciones de salud

Categorías